Biblio

Found 876 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Z
Authors: Zimbardo Gaetano
Title: A Particle Accelerator in the Radiation Belts
Abstract: Satellites in the radiation belts reveal plasma structures that can jumpstart the acceleration of electrons to very high energies.
Date: 11/2013 Publisher: Physics DOI: 10.1103/Physics.6.131 Available at: http://dx.doi.org/10.1103/Physics.6.131
More Details
Authors: Zhu Hui, Chen Lunjin, Liu Xu, and Shprits Yuri Y
Title: Modulation of Locally Generated Equatorial Noise by ULF Wave
Abstract: In this paper we report a rare and fortunate event of fast magnetosonic (MS, also called equatorial noise) waves modulated by compressional ultralow frequency (ULF) waves measured by Van Allen Probes. The characteristics of MS waves, ULF waves, proton distribution, and their potential correlations are analyzed. The results show that ULF waves can modulate the energetic ring proton distribution and in turn modulate the MS generation. Furthermore, the variation of MS intensities is attributed to not only ULF wave activities but also the variation of background parameters, for example, number density. The results confirm the opinion that MS waves are generated by proton ring distribution and propose a new modulation phenomenon.
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026199 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026199
More Details
Authors: Zhu Hui, Liu Xu, and Chen Lunjin
Title: Triggered Plasmaspheric Hiss: Rising Tone Structures
Abstract: In this study, a rare hiss event observed by Van Allen Probe is reported and the possible generation is investigated based on wave and plasma measurements. The results suggest that the normal hiss (from 0.05fce to 0.5fce) with dominantly equatorward Poynting fluxes is locally generated by plasma sheet electrons via cyclotron instability. The low‐frequency band (from 30 Hz to 0.05fce) with a mixture of equatorward and poleward Poynting fluxes is probably due to multiple reflections inside the plasmasphere. Such difference in the two bands is confirmed by the calculation of minimum energy of resonant electrons and local growth rate. Moreover, the analysis on the fine structures of normal hiss waves shows that besides the expected incoherent structure (below 1 kHz), several rising tone elem. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082688 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082688
More Details
Authors: Zhu Hui, Gu Wenyao, and Chen Lunjin
Title: Statistical analysis on plasmatrough exohiss waves from the Van Allen Probes
Abstract: In this study using Van Allen Probe wave observations we investigate the statistical properties of exohiss waves, which are structureless whistler mode waves observed outside the plasmapause. The exohiss waves are identified based on the cold electron number density, frequency distribution, ellipticity, and wave normal angle. The statistical analysis on exohiss wave properties shows that exohiss waves prefer to occur over 3Date: 06/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026359 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026359
More Details
Authors: Zhu Hui, Su Zhenpeng, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons
Abstract: Exohiss waves are whistler mode hiss observed in the plasmatrough region. We present a case study of exohiss waves and the corresponding background plasma distributions observed by the Van Allen Probes in the dayside low-latitude region. The analysis of wave Poynting fluxes, suprathermal electron fluxes and cold electron densities supports the scenario that exohiss leaks from the plasmasphere into the plasmatrough. Quasilinear calculations further reveal that exohiss can potentially cause the resonant scattering loss of radiation belt electrons ~Date: 02/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL062964 Available at: http://doi.wiley.com/10.1002/2014GL062964
More Details
Authors: Zhu Hui, Shprits Yuri Y, Chen Lunjin, Liu Xu, and Kellerman Adam C.
Title: An event on simultaneous amplification of exohiss and chorus waves associated with electron density enhancements
Abstract: Whistler mode exohiss are the structureless hiss waves observed outside the plasmapause with featured equatorward Poynting flux. An event of the amplification of exohiss as well as chorus waves was recorded by Van Allen Probes during the recovery phase of a weak geomagnetic storm. Amplitudes of both types of the waves showed a significant increase at the regions of electron density enhancements. It is found that the electrons resonant with exohiss and chorus showed moderate pitch‐angle anisotropies. The ratio of the number of electrons resonating with exohiss to total electron number presented in‐phase correlation with density variations, which suggests that exohiss can be amplified due to electron density enhancement in terms of cyclotron instability. The calculation of linear growth . . .
Date: 10/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA025023 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2017JA025023
More Details
Authors: Zhou Qinghua, Xiao Fuliang, Yang Chang, Liu Si, He Yihua, et al.
Title: Evolution of chorus emissions into plasmaspheric hiss observed by Van Allen Probes
Abstract: The two classes of whistler mode waves (chorus and hiss) play different roles in the dynamics of radiation belt energetic electrons. Chorus can efficiently accelerate energetic electrons, and hiss is responsible for the loss of energetic electrons. Previous studies have proposed that chorus is the source of plasmaspheric hiss, but this still requires an observational confirmation because the previously observed chorus and hiss emissions were not in the same frequency range in the same time. Here we report simultaneous observations form Van Allen Probes that chorus and hiss emissions occurred in the same range ∼300–1500 Hz with the peak wave power density about 10−5 nT2/Hz during a weak storm on 3 July 2014. Chorus emissions propagate in a broad region outside the plasmapause. Meanwhi. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 4518 - 4529 DOI: 10.1002/2016JA022366 Available at: http://doi.wiley.com/10.1002/2016JA022366
More Details
Authors: Zhou Xu-Zhi, Wang Zi-Han, Zong Qiu-Gang, Rankin Robert, Kivelson Margaret G., et al.
Title: Charged particle behavior in the growth and damping stages of ultralow frequency waves: theory and Van Allen Probes observations
Abstract: Ultralow frequency (ULF) electromagnetic waves in Earth's magnetosphere can accelerate charged particles via a process called drift resonance. In the conventional drift-resonance theory, a default assumption is that the wave growth rate is time-independent, positive, and extremely small. However, this is not the case for ULF waves in the real magnetosphere. The ULF waves must have experienced an earlier growth stage when their energy was taken from external and/or internal sources, and as time proceeds the waves have to be damped with a negative growth rate. Therefore, a more generalized theory on particle behavior during different stages of ULF wave evolution is required. In this paper, we introduce a time-dependent imaginary wave frequency to accommodate the growth and damping of the wav. . .
Date: 03/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2016JA022447 Available at: http://doi.wiley.com/10.1002/2016JA022447http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2016JA022447
More Details
Authors: Zhou Qinghua, Xiao Fuliang, Yang Chang, Liu Si, He Yihua, et al.
Title: Generation of lower and upper bands of electrostatic electron cyclotron harmonic waves in the Van Allen radiation belts
Abstract: Electrostatic electron cyclotron harmonic (ECH) waves generated by the electron loss cone distribution can produce efficient scattering loss of plasma sheet electrons, which has a significant effect on the dynamics in the outer magnetosphere. Here we report two ECH emission events around the same location L≈ 5.7–5.8, MLT ≈ 12 from Van Allen Probes on 11 February (event A) and 9 January 2014 (event B), respectively. The spectrum of ECH waves was centered at the lower half of the harmonic bands during event A, but the upper half during event B. The observed electron phase space density in both events is fitted by the subtracted bi-Maxwellian distribution, and the fitting functions are used to evaluate the local growth rates of ECH waves based on a linear theory for homogeneous plasmas.. . .
Date: 05/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL073051 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL073051/full
More Details
Authors: Zhou Qinghua, Xiao Fuliang, Yang Chang, Liu Si, Kletzing C A, et al.
Title: Excitation of nightside magnetosonic waves observed by Van Allen Probes
Abstract: During the recovery phase of the geomagnetic storm on 30-31 March 2013, Van Allen Probe A detected enhanced magnetosonic (MS) waves in a broad range of L =1.8-4.7 and MLT =17-22 h, with a frequency range ~10-100 Hz. In the meanwhile, distinct proton ring distributions with peaks at energies of ~10 keV, were also observed in L =3.2-4.6 and L =5.0-5.6. Using a subtracted bi-Maxwellian distribution to model the observed proton ring distribution, we perform three dimensional ray tracing to investigate the instability, propagation and spatial distribution of MS waves. Numerical results show that nightside MS waves are produced by proton ring distribution and grow rapidly from the source location L =5.6 to the location L =5.0, but remain nearly stable at locations L <5.0 Moreover, waves launched. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2014JA020481 Available at: http://doi.wiley.com/10.1002/2014JA020481
More Details
Authors: Zhou Xu-Zhi, Wang Zi-Han, Zong Qiu-Gang, Claudepierre Seth G., Mann Ian R., et al.
Title: Imprints of impulse-excited hydromagnetic waves on electrons in the Van Allen radiation belts
Abstract: Ultralow frequency electromagnetic oscillations, interpreted as standing hydromagnetic waves in the magnetosphere, are a major energy source that accelerates electrons to relativistic energies in the Van Allen radiation belt. Electrons can rapidly gain energy from the waves when they resonate via a process called drift resonance, which is observationally characterized by energy-dependent phase differences between electron flux and electromagnetic oscillations. Such dependence has been recently observed and interpreted as spacecraft identifications of drift resonance electron acceleration. Here we show that in the initial wave cycles, the observed phase relationship differs from that characteristic of well-developed drift resonance. We further examine the differences and find that they are . . .
Date: 08/2015 Publisher: Geophysical Research Letters Pages: 6199 - 6204 DOI: 10.1002/grl.v42.1510.1002/2015GL064988 Available at: http://doi.wiley.com/10.1002/grl.v42.15http://doi.wiley.com/10.1002/2015GL064988
More Details
Authors: Zhima Zeren, Chen Lunjin, Fu Huishan, Cao Jinbin, Horne Richard, et al.
Title: Observations of discrete magnetosonic waves off the magnetic equator
Abstract: Fast mode magnetosonic waves are typically confined close to the magnetic equator and exhibit harmonic structures at multiples of the local, equatorial proton cyclotron frequency. We report observations of magnetosonic waves well off the equator at geomagnetic latitudes from −16.5°to −17.9° and L shell ~2.7–4.6. The observed waves exhibit discrete spectral structures with multiple frequency spacings. The predominant frequency spacings are ~6 and 9 Hz, neither of which is equal to the local proton cyclotron frequency. Backward ray tracing simulations show that the feature of multiple frequency spacings is caused by propagation from two spatially narrow equatorial source regions located at L ≈ 4.2 and 3.7. The equatorial proton cyclotron frequencies at those two locations mat. . .
Date: 12/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL066255 Available at: http://doi.wiley.com/10.1002/2015GL066255http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015GL066255
More Details
Authors: Zheng Hao, Holzworth Robert H., Brundell James B., Jacobson Abram R., Wygant John R., et al.
Title: A Statistical Study of Whistler Waves Observed by Van Allen Probes (RBSP) and Lightning Detected by WWLLN
Abstract: Lightning-generated whistler waves are electromagnetic plasma waves in the very low frequency (VLF) band, which play an important role in the dynamics of radiation belt particles. In this paper, we statistically analyze simultaneous waveform data from the Van Allen Probes (Radiation Belt Storm Probes, RBSP) and global lightning data from the World Wide Lightning Location Network (WWLLN). Data were obtained between July to September 2013 and between March and April 2014. For each day during these periods, we predicted the most probable 10 min for which each of the two RBSP satellites would be magnetically conjugate to lightning producing regions. The prediction method uses integrated WWLLN stroke data for that day obtained during the three previous years. Using these predicted times for mag. . .
Date: 03/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA022010 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2015JA022010/full
More Details
Authors: Zheng Liheng, Chan Anthony A, Albert Jay M, Elkington Scot R, Koller Josef, et al.
Title: Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates
Abstract: A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Itô stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle α0=90° is also derived. The model is applied to a simulation of the October 2002 storm event. At α0 near 90°, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at sm. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 7615 - 7635 DOI: 10.1002/jgra.v119.910.1002/2014JA020127 Available at: http://doi.wiley.com/10.1002/jgra.v119.9http://doi.wiley.com/10.1002/2014JA020127
More Details
Authors: Zhelavskaya Irina S., Shprits Yuri Y, and ć Maria
Title: Empirical modeling of the plasmasphere dynamics using neural networks
Abstract: We propose a new empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. Utilizing the density database obtained using the NURD (Neural-network-based Upper hybrid Resonance Determination) algorithm for the period of October 1, 2012 - July 1, 2016, in conjunction with solar wind data and geomagnetic indices, we develop a neural network model that is capable of globally reconstructing the dynamics of the cold plasma density distribution for 2≤L≤6 and all local times. We validate and test the model by measuring its performance on independent datasets withheld from the training set and by comparing the model predicted global evolution with global images of He+ distribution in the Earth's plasmasph. . .
Date: 10/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024406 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024406/full
More Details
Authors: Zhelavskaya I. S., Spasojevic M., Shprits Y Y, and Kurth W S
Title: Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft
Abstract: We present the Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made on board NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the Electric and Magnetic. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022132 Available at: http://doi.wiley.com/10.1002/2015JA022132
More Details
Authors: Zhao H., Li X, Baker D N, Fennell J. F., Blake J B, et al.
Title: The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements
Abstract: Enabled by the comprehensive measurements from the MagEIS, HOPE, and RBSPICE instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher energy protons. During the storm main phase, ions with energies < 50 keV contribute more significantly to the ring current than those with higher energies; while the higher energy protons dominate during the recovery phase and quiet times. The enhancements of higher energy proton fluxes as well as energy content generally occur later than those of lower. . .
Date: 08/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021533 Available at: http://doi.wiley.com/10.1002/2015JA021533
More Details
Authors: Zhao H., Baker D N, Califf S., Li X, Jaynes A. N., et al.
Title: Van Allen Probes measurements of energetic particle deep penetration into the low L region (L<4) during the storm on 8 April 2016
Abstract: Using measurements from the Van Allen Probes, a penetration event of 10s – 100s of keV electrons and 10s of keV protons into the low L-shells (L<4) is studied. Timing and magnetic local time (MLT) differences of energetic particle deep penetration are unveiled and underlying physical processes are examined. During this event, both proton and electron penetrations are MLT-asymmetric. The observed MLT difference of proton penetration is consistent with convection of plasma sheet protons, suggesting enhanced convection during geomagnetic active times to be the cause of energetic proton deep penetration during this event. The observed MLT difference of 10s – 100s of keV electron penetration is completely different from 10s of keV protons and cannot be well explained by inward radial diffus. . .
Date: 11/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024558 Available at: http://doi.wiley.com/10.1002/2017JA024558http://onlinelibrary.wiley.com/wol1/doi/10.1002/2017JA024558/fullpdf
More Details
Authors: Zhao Wanli, Liu Si, Zhang Sai, Zhou Qinghua, Yang Chang, et al.
Title: Global Occurrences of Auroral Kilometric Radiation Related to Suprathermal Electrons in Radiation Belts
Abstract: Auroral kilometric radiation (AKR) can potentially produce serious damage to space‐borne systems by accelerating trapped radiation belt electrons to relativistic energies. Here we examine the global occurrences of AKR emissions in radiation belts based on Van Allen Probes observations from 1 October 2012 to 31 December 2016. The statistical results (1,848 events in total) show that AKR covers a broad region of L= 3–6.5 and 00–24 magnetic local time (MLT), with a higher occurrence on the nightside (20–24 MLT and 00–04 MLT) within L= 5–6.5. All the AKR events are observed to be accompanied with suprathermal (∼1 keV) electron flux enhancements. During active geomagnetic periods, both AKR occurrences and electron injections tend to be more distinct, and AKR emission extends to th. . .
Date: 07/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083944 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083944
More Details
Authors: Zhao H., Baker D N, Li X, Jaynes A. N., and Kanekal S G
Title: The Acceleration of Ultrarelativistic Electrons During a Small to Moderate Storm of 21 April 2017
Abstract: The ultrarelativistic electrons (E > ~3 MeV) in the outer radiation belt received limited attention in the past due to sparse measurements. Nowadays, the Van Allen Probes measurements of ultrarelativistic electrons with high energy resolution provide an unprecedented opportunity to study the dynamics of this population. In this study, using data from the Van Allen Probes, we report significant flux enhancements of ultrarelativistic electrons with energies up to 7.7 MeV during a small to moderate geomagnetic storm. The underlying physical mechanisms are investigated by analyzing and simulating the evolution of electron phase space density. The results suggest that during this storm, the acceleration mechanism for ultrarelativistic electrons in the outer belt is energy‐dependent: local acc. . .
Date: 06/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL078582 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL078582
More Details
Authors: Zhao H., Friedel R H W, Chen Y., Reeves G D, Baker D N, et al.
Title: An empirical model of radiation belt electron pitch angle distributions based on Van Allen Probes measurements
Abstract: Based on over 4 years of Van Allen Probes measurements, an empirical model of radiation belt electron equatorial pitch angle distribution (PAD) is constructed. The model, developed by fitting electron PADs with Legendre polynomials, provides the statistical PADs as a function of L‐shell (L=1 – 6), magnetic local time (MLT), electron energy (~30 keV – 5.2 MeV), and geomagnetic activity (represented by the Dst index), and is also the first empirical PAD model in the inner belt and slot region. For MeV electrons, model results show more significant day‐night PAD asymmetry of electrons with higher energies and during disturbed times, which is caused by geomagnetic field configuration and flux radial gradient changes. Steeper PADs with higher fluxes around 90° pitch angle (PA) and lowe. . .
Date: 04/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025277 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025277
More Details
Authors: Zhao H., Li X, Baker D N, Claudepierre S G, Fennell J. F., et al.
Title: Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements
Abstract: Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lower energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densi. . .
Date: 04/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 3333 - 3346 DOI: 10.1002/2016JA022358 Available at: http://doi.wiley.com/10.1002/2016JA022358
More Details
Authors: Zhao H., Li X, Blake J B, Fennell J. F., Claudepierre S G, et al.
Title: Peculiar pitch angle distribution of relativistic electrons in the inner radiation belt and slot region
Abstract: The relativistic electrons in the inner radiation belt have received little attention in the past due to sparse measurements and unforgiving contamination from the inner belt protons. The high-quality measurements of the Magnetic Electron Ion Spectrometer instrument onboard Van Allen Probes provide a great opportunity to investigate the dynamics of relativistic electrons in the low L region. In this letter, we report the newly unveiled pitch angle distribution (PAD) of the energetic electrons with minima at 90° near the magnetic equator in the inner belt and slot region. Such a PAD is persistently present throughout the inner belt and appears in the slot region during storms. One hypothesis for 90° minimum PADs is that off 90° electrons are preferentially heated by chorus waves just out. . .
Date: 04/2014 Publisher: Geophysical Research Letters Pages: 2250 - 2257 DOI: 10.1002/2014GL059725 Available at: http://doi.wiley.com/10.1002/2014GL059725
More Details
Authors: Zhao H., Baker D N, Li X, Jaynes A. N., and Kanekal S G
Title: The Effects of Geomagnetic Storms and Solar Wind Conditions on the Ultrarelativistic Electron Flux Enhancements
Abstract: Using data from the Relativistic Electron Proton Telescope on the Van Allen Probes, the effects of geomagnetic storms and solar wind conditions on the ultrarelativistic electron (E > ~3 MeV) flux enhancements in the outer radiation belt, especially regarding their energy dependence, are investigated. It is showed that, statistically, more intense geomagnetic storms are indeed more likely to cause flux enhancements of ~1.8‐ to 7.7‐MeV electrons, though large variations exist. As the electron energy gets higher, the probability of flux enhancement gets lower. To shed light on which conditions of the storms are preferred to cause ultrarelativistic electron flux enhancement, detailed superposed epoch analyses of solar wind parameters and geomagnetic indices during moderate and intense stor. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 1948 - 1965 DOI: 10.1029/2018JA026257 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026257
More Details
Authors: Zhao H., Li X, Blake J B, Fennell J. F., Claudepierre S G, et al.
Title: Characteristics of pitch angle distributions of 100 s keV electrons in the slot region and inner radiation belt
Abstract: The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-art pitch-angle-resolved data from the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van Allen Probes, a detailed analysis of 100 s keV electron PADs below L = 4 is performed, in which the PADs is categorized into three types: normal (flux peaking at 90∘), cap (exceedingly peaking narrowly around 90∘) and 90∘-minimum (lower flux at 90∘) PADs. By examining the characteristics of the PADs of ~460 keV electrons for over a year, we find that the 90∘-minimum PADs are generally present in the inner belt (L < 2), while normal PADs dominate at .L ~3.5. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020386 Available at: http://doi.wiley.com/10.1002/2014JA020386
More Details
Authors: Zhao Lei, Yu Yiqun, Delzanno Gian Luca, and Jordanova Vania K.
Title: Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the 17 March 2013 storm
Abstract: Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyroresonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the 17 March 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against nondipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field (RAM-SCB), a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field. By applying quasi-linear theory, the bounce- and Magnetic Local Time (MLT)-averaged electron pit. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020858 Available at: http://doi.wiley.com/10.1002/2014JA020858
More Details
Authors: Zhao H., Johnston W.R., Baker D.N., Li X, Ni B, et al.
Title: Characterization and Evolution of Radiation Belt Electron Energy Spectra Based on the Van Allen Probes Measurements
Abstract: Based on the measurements of ~100‐keV to 10‐MeV electrons from the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron and Proton Telescope (REPT) on the Van Allen Probes, the radiation belt electron energy spectra characterization and evolution have been investigated systematically. The results show that the majority of radiation belt electron energy spectra can be represented by one of three types of distributions: exponential, power law, and bump‐on‐tail (BOT). The exponential spectra are generally dominant in the outer radiation belt outside the plasmasphere, power law spectra usually appear at high L‐shells during injections of lower‐energy electrons, and BOT spectra commonly dominate inside the plasmasphere at L>2.5 during relatively quiet times. The. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026697 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026697
More Details
Authors: Zhang Wenxun, Fu Song, Gu Xudong, Ni Binbin, Xiang Zheng, et al.
Title: Electron Scattering by Plasmaspheric Hiss in a Nightside Plume
Abstract: Plasmaspheric hiss is known to play an important role in radiation belt electron dynamics in high plasma density regions. We present observations of two crossings of a plasmaspheric plume by the Van Allen Probes on 26 December 2012, which occurred unusually at the post‐midnight‐to‐dawn sector between L ~ 4–6 during a geomagnetically quiet period. This plume exhibited pronounced electron densities higher than those of the average plume level. Moderate hiss emissions accompanied the two plume crossings with the peak power at about 100 Hz. Quantification of quasi‐linear bounce‐averaged electron scattering rates by hiss in the plume demonstrates that the waves are efficient to pitch angle scatter ~10–100 keV electrons at rates up to ~10−4 s−1 near the loss cone but become gra. . .
Date: 05/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077212 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL077212
More Details
Authors: Zhang Wenxun, Ni Binbin, Huang He, Summers Danny, Fu Song, et al.
Title: Statistical Properties of Hiss in Plasmaspheric Plumes and Associated Scattering Losses of Radiation Belt Electrons
Abstract: Whistler mode hiss acts as an important loss mechanism contributing to the radiation belt electron dynamics inside the plasmasphere and plasmaspheric plumes. Based on Van Allen Probes observations from September 2012 to December 2015, we conduct a detailed analysis of hiss properties in plasmaspheric plumes and illustrate that corresponding to the highest occurrence probability of plumes at L = 5.0–6.0 and MLT = 18–21, hiss emissions occur concurrently with a rate of >~80%. Plume hiss can efficiently scatter ~10‐ to 100‐keV electrons at rates up to ~10−4 s−1 near the loss cone, and the resultant electron loss timescales vary largely with energy, that is, from less than an hour for tens of kiloelectron volt electrons to several days for hundreds of kiloelectron volt electrons an. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL081863 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL081863
More Details
Authors: Zhang X.-J., Mourenas D., Artemyev A. V., Angelopoulos V, and Thorne R M
Title: Electron flux enhancements at L  = 4.2 observed by Global Positioning System satellites: Relationship with solar wind and geomagnetic activity
Abstract: Determining solar wind and geomagnetic activity parameters most favorable to strong electron flux enhancements is an important step towards forecasting radiation belt dynamics. Using electron flux measurements from Global Positioning System satellites at L = 4.2 in 2009‐2016, we seek statistical relationships between flux enhancements at different energies and solar wind dynamic pressure Pdyn, AE, and Kp, from hundreds of events inside and outside the plasmasphere. Most ⩾1 MeV electron flux enhancements occur during non‐storm (or weak storm) times. Flux enhancements of 4 MeV electrons outside the plasmasphere occur during periods of low Pdyn and high AE. We perform superposed epoch analyses of GPS electron fluxes, along with solar wind and geomagnetic indices, 40 keV electron flu. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025497 Available at: http://doi.wiley.com/10.1029/2018JA025497http://onlinelibrary.wiley.com/wol1/doi/10.1029/2018JA025497/fullpdfhttps://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1029%2F2018JA025497
More Details
Authors: Zhang X.-J., Mourenas D., Artemyev A. V., Angelopoulos V, and Thorne R M
Title: Contemporaneous EMIC and Whistler-Mode Waves: Observations and Consequences for MeV Electron Loss
Abstract: The high variability of relativistic (MeV) electron fluxes in the Earth's radiation belts is partly controlled by loss processes involving resonant interactions with electromagnetic ion cyclotron (EMIC) and whistler-mode waves. But as previous statistical models were generated independently for each wave mode, whether simultaneous electron scattering by the two wave types has global importance remains an open question. Using >3 years of simultaneous Van Allen Probes and THEMIS measurements, we explore the contemporaneous presence of EMIC and whistler-mode waves in the same L-shell, albeit at different local times, determining the distribution of wave and plasma parameters as a function of L, Kp, and AE. We derive electron lifetimes from observations and provide the first statistics of comb. . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL073886 Available at: onlinelibrary.wiley.com/doi/10.1002/2017GL073886/full
More Details
Authors: Zhang X.-J., Li W, Thorne R M, Angelopoulos V, Bortnik J, et al.
Title: Statistical distribution of EMIC wave spectra: Observations from Van Allen Probes
Abstract: It has been known that electromagnetic ion cyclotron (EMIC) waves can precipitate ultrarelativistic electrons through cyclotron resonant scattering. However, the overall effectiveness of this mechanism has yet to be quantified, because it is difficult to obtain the global distribution of EMIC waves that usually exhibit limited spatial presence. We construct a statistical distribution of EMIC wave frequency spectra and their intensities based on Van Allen Probes measurements from September 2012 to December 2015. Our results show that as the ratio of plasma frequency over electron gyrofrequency increases, EMIC wave power becomes progressively dominated by the helium band. There is a pronounced dawn-dusk asymmetry in the wave amplitude and the frequency spectrum. The frequency spectrum does n. . .
Date: 12/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071158 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071158/full
More Details
Authors: Zhang X.-J., Li W, Ma Q, Thorne R M, Angelopoulos V, et al.
Title: Direct evidence for EMIC wave scattering of relativistic electrons in space
Abstract: Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes. EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the. . .
Date: 07/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022521 Available at: http://doi.wiley.com/10.1002/2016JA022521
More Details
Authors: Zhang J.-C., Kistler L. M., Spence H E, Wolf R. A., Reeves G., et al.
Title: “Trunk-like” heavy ion structures observed by the Van Allen Probes
Abstract: Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. We report “trunk-like” ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant's trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He+ and O+ ions but not in H+. During the event, ion energies in the He+ trunk, located at L = 3.6–2.6, MLT = 9.1–10.5, and MLAT = −2.4–0.09°, vary monotonically from 3.5 to 0.04 keV. The values at the two end points of the O+ trunk are: energy = 4.5–0.7 keV, L = 3.6–2.5, MLT = 9.1–10.7, and MLAT = −2.4–0.4°. Results from backward ion drift path tra. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021822 Available at: http://doi.wiley.com/10.1002/2015JA021822http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021822
More Details
Authors: Zhang Yang, Shi Run, Ni Binbin, Gu Xudong, Zhang Xianguo, et al.
Title: Inferring electromagnetic ion cyclotron wave intensity from low altitude POES proton flux measurements: A detailed case study with conjugate Van Allen Probes observations
Abstract: N/A
Date: 03/2017 Publisher: Advances in Space Research Pages: 1568 - 1576 DOI: 10.1016/j.asr.2016.12.035 Available at: http://www.sciencedirect.com/science/article/pii/S0273117716307578
More Details
Authors: Zhang J.-C., Saikin A. A., Kistler L. M., Smith C W, Spence H E, et al.
Title: Excitation of EMIC waves detected by the Van Allen Probes on 28 April 2013
Abstract: We report the wave observations, associated plasma measurements, and linear theory testing of electromagnetic ion cyclotron (EMIC) wave events observed by the Van Allen Probes on 28 April 2013. The wave events are detected in their generation regions as three individual events in two consecutive orbits of Van Allen Probe-A, while the other spacecraft, B, does not detect any significant EMIC wave activity during this period. Three overlapping H+ populations are observed around the plasmapause when the waves are excited. The difference between the observational EMIC wave growth parameter (Σh) and the theoretical EMIC instability parameter (Sh) is significantly raised, on average, to 0.10 ± 0.01, 0.15 ± 0.02, and 0.07 ± 0.02 during the three wave events, respectively. On Van A. . .
Date: 06/2014 Publisher: Geophysical Research Letters Pages: 4101–4108 DOI: 10.1002/2014GL060621 Available at: http://doi.wiley.com/10.1002/2014GL060621
More Details
Authors: Zhang Zhenxia, Chen Lunjin, Li Xinqiao, Xia Zhiyang, Heelis Roderick A., et al.
Title: Observed propagation route of VLF transmitter signals in the magnetosphere
Abstract: Signals of powerful ground transmitters at various places have been detected by satellites in near‐Earth space. The study on propagation mode, ducted or nonducted, has attracted much attentions for several decades. Based on the statistical results from Van Allen Probes (data from Oct. 2012 to Mar. 2017) and DEMETER satellite (from Jan. 2006 to Dec. 2007), we present the ground transmitter signals distributed clearly in ionosphere and magnetosphere. The observed propagation route in the meridian plane in the magnetosphere for each of various transmitters from the combination of DEMETER and Van Allen Probes data in night time is revealed for the first time. We use realistic ray tracing simulation and compare simulation results against Van Allen Probes and DEMETER observation. By comparison. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025637 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025637
More Details
Authors: Zhang Dianjun, Liu Wenlong, Li Xinlin, Sarris Theodore, Xiao Chao, et al.
Title: Observations of impulsive electric fields induced by Interplanetary Shock
Abstract: We investigate the characteristics of impulsive electric fields in Earth's magnetosphere, as measured by the Van Allen Probes, in association with interplanetary shocks, as measured by ACE and Wind spacecraft in the solar wind from January 2013 to July 2016. It is shown that electric field impulses are mainly induced by global compressions by the shocks, mostly in the azimuthal direction and the amplitudes of the initial electric field impulses are positively correlated with the rate of increase of dynamic pressure across the shock in the dayside. It is also shown that the temporal profile of the impulse is related to the temporal profile of the solar wind dynamic pressure, Pd. It is suggested that during the first period of the impulse the evolution of the electric field is directly contr. . .
Date: 07/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL078809 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL078809
More Details
Authors: Zhang Jichun, Halford Alexa J., Saikin Anthony A., Huang Chia-Lin, Spence Harlan E., et al.
Title: EMIC waves and associated relativistic electron precipitation on 25-26 January 2013
Abstract: Using measurements from the Van Allen Probes and the Balloon Array for RBSP Relativistic Electron Losses (BARREL), we perform a case study of electromagnetic ion cyclotron (EMIC) waves and associated relativistic electron precipitation (REP) observed on 25–26 January 2013. Among all the EMIC wave and REP events from the two missions, the pair of the events is the closest both in space and time. The Van Allen Probe-B detected significant EMIC waves at L = 2.1–3.9 and magnetic local time (MLT) = 21.0–23.4 for 53.5 min from 2353:00 UT, 25 January 2013. Meanwhile, BARREL-1T observed clear precipitation of relativistic electrons at L = 4.2–4.3 and MLT = 20.7–20.8 for 10.0 min from 2358 UT, 25 January 2013. Local plasma and field conditions for the excitation of the. . .
Date: 10/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022918 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022918/full
More Details
Authors: Zhang Q. -H., Lockwood M., Foster J. C., Zhang S. -R., Zhang B. -C., et al.
Title: Direct observations of the full Dungey convection cycle in the polar ionosphere for southward interplanetary magnetic field conditions
Abstract: Tracking the formation and full evolution of polar cap ionization patches in the polar ionosphere, we directly observe the full Dungey convection cycle for southward interplanetary magnetic field (IMF) conditions. This enables us to study how the Dungey cycle influences the patches’ evolution. The patches were initially segmented from the dayside storm enhanced density plume (SED) at the equatorward edge of the cusp, by the expansion and contraction of the polar cap boundary (PCB) due to pulsed dayside magnetopause reconnection, as indicated by in-situ THEMIS observations. Convection led to the patches entering the polar cap and being transported antisunward, whilst being continuously monitored by the globally distributed arrays of GPS receivers and SuperDARN radars. Changes in convectio. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021172 Available at: http://doi.wiley.com/10.1002/2015JA021172
More Details
Authors: Zhang X.-J., Thorne R., Artemyev A., Mourenas D., Angelopoulos V, et al.
Title: Properties of intense field-aligned lower-band chorus waves: Implications for nonlinear wave-particle interactions
Abstract: Resonant interactions between electrons and chorus waves are responsible for a wide range of phenomena in near‐Earth space (e.g., diffuse aurora, acceleration of MeV electrons, etc.). Although quasi‐linear diffusion is believed to be the primary paradigm for describing such interactions, an increasing number of investigations suggest that nonlinear effects are also important in controlling the rapid dynamics of electrons. However, present models of nonlinear wave‐particle interactions, which have been successfully used to describe individual short‐term events, are not directly applicable for a statistical evaluation of nonlinear effects and the long‐term dynamics of the outer radiation belt, because they lack information on the properties of intense (nonlinearly resonating with e. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025390 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025390
More Details
Authors: Zhang X.‐J., Mourenas D., Artemyev A. V., Angelopoulos V, Bortnik J, et al.
Title: Nonlinear Electron Interaction With Intense Chorus Waves: Statistics of Occurrence Rates
Abstract: A comprehensive statistical analysis on 8 years of lower‐band chorus wave packets measured by the Van Allen Probes and THEMIS spacecraft is performed to examine whether, when, and where these waves are above the theoretical threshold for nonlinear resonant wave‐particle interaction. We find that ∼5–30% of all chorus waves interact nonlinearly with ∼30‐ to 300‐keV electrons possessing equatorial pitch angles of >40° in the outer radiation belt, especially during disturbed (AE>500 nT) periods with energetic particles associated with injections from the plasma sheet. Such considerable occurrence rates of nonlinear interactions imply that the evolution of energetic electron fluxes should be dominated by nonlinear effects, rather than by quasi‐linear diffusion as commonly assum. . .
Date: 06/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083833 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083833
More Details
Authors: Zhang X.-J., Li W, Thorne R M, Angelopoulos V, Ma Q, et al.
Title: Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event
Abstract: Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed by Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, t. . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022517 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022517/abstract
More Details
Authors: Zanetti L. J., Mauk B H, Fox N.J., Barnes R.J., Weiss M, et al.
Title: The Evolving Space Weather System - Van Allen Probes Contribution
Abstract: The overarching goal and purpose of the study of space weather is clear - to understand and address the issues caused by solar disturbances on humans and technological systems. Space weather has evolved in the past few decades from a collection of concerned agencies and researchers to a critical function of the National Weather Service of NOAA. The general effects have also evolved from the well-known telegraph disruptions of the mid-1800’s to modern day disturbances of the electric power grid, communications and navigation, human spaceflight and spacecraft systems. The last two items in this list, and specifically the effects of penetrating radiation, were the impetus for the space weather broadcast implemented on NASA’s Van Allen Probes’ twin pair of satellites, launched in August . . .
Date: 10/2014 Publisher: Space Weather DOI: 10.1002/2014SW001108 Available at: http://doi.wiley.com/10.1002/2014SW001108
More Details
Y
Authors: Yue Chao, Jun Chae‐Woo, Bortnik Jacob, An Xin, Ma Qianli, et al.
Title: The Relationship Between EMIC Wave Properties and Proton Distributions Based on Van Allen Probes Observations
Abstract: Plasma kinetic theory predicts that sufficiently anisotropic proton distribution will excite electromagnetic ion cyclotron (EMIC) waves, which in turn relax the proton distribution to a marginally stable state creating an upper bound on the relaxed proton anisotropy. Here, using EMIC wave observations and coincident plasma measurements made by Van Allen Probes in the inner magnetosphere, we show that the proton distributions are well constrained by this instability to a marginally stable state. Near the threshold, the probability of EMIC wave occurrence is highest, having left‐handed polarization and observed near the magnetic equator with relatively small wave normal angles, indicating that these waves are locally generated. In addition, EMIC waves are distributed in two magnetic local . . .
Date: 04/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082633 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082633
More Details
Authors: Yue Chao, Bortnik Jacob, Thorne Richard M, Ma Qianli, An Xin, et al.
Title: The characteristic pitch angle distributions of 1 eV to 600 keV protons near the equator based on Van Allen Probes observations
Abstract: Understanding the source and loss processes of various plasma populations is greatly aided by having accurate knowledge of their pitch angle distributions (PADs). Here, we statistically analyze ~1 eV to 600 keV hydrogen (H+) PADs near the geomagnetic equator in the inner magnetosphere based on Van Allen Probes measurements, to comprehensively investigate how the H+ PADs vary with different energies, magnetic local times (MLTs), L-shells, and geomagnetic conditions. Our survey clearly indicates four distinct populations with different PADs: (1) a pancake distribution of the plasmaspheric H+ at low L-shells except for dawn sector; (2) a bi-directional field-aligned distribution of the warm plasma cloak; (3) pancake or isotropic distributions of ring current H+; (4) radiation belt particles s. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024421 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024421/full
More Details
Authors: Yue Chao, An Xin, Bortnik Jacob, Ma Qianli, Li Wen, et al.
Title: The relationship between the macroscopic state of electrons and the properties of chorus waves observed by the Van Allen Probes
Abstract: Plasma kinetic theory predicts that a sufficiently anisotropic electron distribution will excite whistler mode waves, which in turn relax the electron distribution in such a way as to create an upper bound on the relaxed electron anisotropy. Here using whistler mode chorus wave and plasma measurements by Van Allen Probes, we confirm that the electron distributions are well constrained by this instability to a marginally stable state in the whistler mode chorus waves generation region. Lower band chorus waves are organized by the electron β∥e into two distinct groups: (i) relatively large-amplitude, quasi-parallel waves with inline image and (ii) relatively small-amplitude, oblique waves with inline image. The upper band chorus waves also have enhanced amplitudes close to the instabili. . .
Date: 08/2016 Publisher: Geophysical Research Letters Pages: 7804 - 7812 DOI: 10.1002/2016GL070084 Available at: http://doi.wiley.com/10.1002/2016GL070084
More Details
Authors: Yue Chao, Chen Lunjin, Bortnik Jacob, Ma Qianli, Thorne Richard M, et al.
Title: The characteristic response of whistler mode waves to interplanetary shocks
Abstract: Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at post-midnight to pre-noon sector, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude that chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron . . .
Date: 09/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024574 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024574/full
More Details
Authors: Yue Chao, Bortnik Jacob, Li Wen, Ma Qianli, Gkioulidou Matina, et al.
Title: The composition of plasma inside geostationary orbit based on Van Allen Probes observations
Abstract: The composition of the inner magnetosphere is of great importance for determining the plasma pressure, and thus the currents and magnetic field configuration. In this study, we perform a statistical survey of equatorial plasma pressure distributions and investigate the relative contributions of ions and electron with different energies inside of geostationary orbit under two AE levels based on over sixty months of observations from the HOPE and RBSPICE mass spectrometers on board Van Allen Probes. We find that the total and partial pressures of different species increase significantly at high AE levels with Hydrogen (H+) pressure being dominant in the plasmasphere. The pressures of the heavy ions and electrons increase outside the plasmapause and develop a strong dawn‐dusk asymmetry with. . .
Date: 07/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025344 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025344
More Details
Authors: Yue Chao, Bortnik Jacob, Chen Lunjin, Ma Qianli, Thorne Richard M, et al.
Title: Transitional behavior of different energy protons based on Van Allen Probes observations
Abstract: Understanding the dynamical behavior of ~1 eV to 50 keV ions and identifying the energies at which the morphologies transit are important in that they involve the relative intensities and distributions of the large-scale electric and magnetic fields, the outflow and recombination rates. However, there have been only few direct observational investigations of the transition in drift behaviors of different energy ions before the Van Allen Probes era. Here, we statistically analyze ~1 eV to 50 keV Hydrogen (H+) differential flux distributions near geomagnetic equator by using Van Allen Probes observations to investigate the H+ dynamics under the regulation of large-scale electric and magnetic fields. Our survey clearly indicates three types of H+ behaviors within different energy ranges, whic. . .
Date: 12/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071324 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071324/full
More Details

Pages