Biblio

Found 4 results
Filters: Author is Bonnell, John  [Clear All Filters]
2016
Authors: Zheng Hao, Holzworth Robert H., Brundell James B., Jacobson Abram R., Wygant John R., et al.
Title: A Statistical Study of Whistler Waves Observed by Van Allen Probes (RBSP) and Lightning Detected by WWLLN
Abstract: Lightning-generated whistler waves are electromagnetic plasma waves in the very low frequency (VLF) band, which play an important role in the dynamics of radiation belt particles. In this paper, we statistically analyze simultaneous waveform data from the Van Allen Probes (Radiation Belt Storm Probes, RBSP) and global lightning data from the World Wide Lightning Location Network (WWLLN). Data were obtained between July to September 2013 and between March and April 2014. For each day during these periods, we predicted the most probable 10 min for which each of the two RBSP satellites would be magnetically conjugate to lightning producing regions. The prediction method uses integrated WWLLN stroke data for that day obtained during the three previous years. Using these predicted times for mag. . .
Date: 03/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA022010 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2015JA022010/full
More Details
2015
Authors: Bonnell John, and Lanzerotti Louis J.
Title: Neutral Oxygen Effects at Low Earth Altitudes: A Critical Uncertainty for Spacecraft Operations and Space Weather Effects
Abstract: Space Weather sits at the intersection of natural phenomena interacting with modern technology—either in space or on Earth's surface. A key aspect of space weather is the interaction of Earth's extended neutral atmosphere with satellite surfaces [e.g., Samwel, 2014, and references therein]. Because neutral oxygen causes spacecraft surface erosion and oxidation, detailed knowledge of the atmosphere below 1000 km is essential for spacecraft design and operations.
Date: 07/2015 Publisher: Space Weather DOI: 10.1002/2015SW001229 Available at: http://doi.wiley.com/10.1002/2015SW001229
More Details
Authors: Dai Lei, Takahashi Kazue, Lysak Robert, Wang Chi, Wygant John R., et al.
Title: Storm-time occurrence and Spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: A Van Allen Probes Statistical study
Abstract: Poloidal ULF waves are capable of efficiently interacting with energetic particles in the ring current and the radiation belt. Using Van Allen Probes (RBSP) data from October 2012 to July 2014, we investigate the spatial distribution and storm-time occurrence of Pc4 (7-25 mHz) poloidal waves in the inner magnetosphere. Pc4 poloidal waves are sorted into two categories: waves with and without significant magnetic compressional components. Two types of poloidal waves have comparable occurrence rates, both of which are much higher during geomagnetic storms. The non-compressional poloidal waves mostly occur in the late recovery phase associated with an increase of Dst toward 0, suggesting that the decay of the ring current provides their free energy source. The occurrence of dayside compressio. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021134 Available at: http://doi.wiley.com/10.1002/2015JA021134
More Details
2014
Authors: Takahashi Kazue, Denton Richard E, Kurth William, Kletzing Craig, Wygant John, et al.
Title: Externally driven plasmaspheric ULF waves observed by the Van Allen Probes
Abstract: We analyze data acquired by the Van Allen Probes on 8 November 2012, during a period of extended low geomagnetic activity, to gain new insight into plasmaspheric ultra-low-frequency (ULF) waves. The waves exhibited strong spectral power in the 5–40 mHzband and included multiharmonic toroidal waves visible up to the 11th harmonic, unprecedented in the plasmasphere. During this wave activity, the interplanetary magnetic field cone angle was small, suggesting that the waves were driven by broadband compressional ULF waves originating in the foreshock region. This source mechanism is supported by the tailward propagation of the compressional magnetic field perturbations at a phase velocity of a few hundred kilometers per second that is determined bythe cross phase analysis of data from the t. . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020373 Available at: http://doi.wiley.com/10.1002/2014JA020373
More Details