Biblio

Found 6 results
Filters: Author is Denton, M. H.  [Clear All Filters]
2018
Authors: Ripoll ‐F., Loridan V., Denton M. H., Cunningham G., Reeves G., et al.
Title: Observations and Fokker‐Planck simulations of the L‐shell, energy, and pitch‐angle structure of Earth’s electron radiation belts during quiet times
Abstract: The evolution of the radiation belts in L‐shell (L), energy (E), and equatorial pitch‐angle (α0) is analyzed during the calm 11‐day interval (March 4 –March 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker‐Planck simulations combined with consistent event‐driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)‐regions persist through 11 days of hiss wave scattering; the pitch‐angle dependent inner belt core (L~<2.2 and E<700 keV), pitch‐angle homogeneous outer belt low‐energy core (L>~5 and E~<100 keV), and a distinct pocket of electrons (L~[4.5, 5.5] and E~[0.7, 2] MeV). The pitch‐angle homogeneous outer belt is explained by the diff. . .
Date: 12/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026111 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026111
More Details
2017
Authors: Denton M. H., Thomsen M F, Reeves G D, Larsen B A, Henderson M G, et al.
Title: The Evolution of the Plasma Sheet Ion Composition: Storms and Recoveries
Abstract: The ion plasma sheet (~few hundred eV to ~few 10s keV) is usually dominated by H+ ions. Here, changes in ion composition within the plasma sheet are explored both during individual events, and statistically during 54 calm-to-storm events and during 21 active-to-calm events. Ion composition data from the HOPE (Helium, Oxygen, Proton, Electron) instruments onboard Van Allen Probes satellites provide exceptional spatial and temporal resolution of the H+, O+, and He+ ion fluxes in the plasma sheet. H+ shown to be the dominant ion in the plasma sheet in the calm-to-storm transition. However, the energy-flux of each ion changes in a quasi-linear manner during extended calm intervals. Heavy ions (O+ and He+) become increasingly important during such periods as charge-exchange reactions result in . . .
Date: 10/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024475 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024475/full
More Details
Authors: Denton M. H., Reeves G D, Larsen B A, Friedel R. F. W., Thomsen M F, et al.
Title: On the origin of low-energy electrons in the inner magnetosphere: Fluxes and pitch-angle distributions
Abstract: Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected previously. This study concerns observations of low-energy electrons made by the Helium Oxygen Proton Electron instrument on board the Van Allen Probes satellites and also observations from geosynchronous orbit made by the Magnetospheric Plasma Analyzer on board Los Alam. . .
Date: 02/2017 Publisher: Journal of Geophysical Research: Space Physics Pages: 1789–1802 DOI: 10.1002/2016JA023648 Available at: onlinelibrary.wiley.com/doi/10.1002/2016JA023648/full
More Details
2016
Authors: Denton M. H., Reeves G. E., Thomsen M F, Henderson M G, Friedel R H W, et al.
Title: The complex nature of storm-time ion dynamics: Transport and local acceleration
Abstract: Data from the Van Allen Probes Helium, Oxygen, Proton, Electron (HOPE) spectrometers reveal hitherto unresolved spatial structure and dynamics in ion populations. Complex regions of O+ dominance, at energies from a few eV to >10 keV, are observed throughout the magnetosphere. Isolated regions on the dayside that are rich in energetic O+ might easily be interpreted as strong energization of ionospheric plasma. We demonstrate, however, that both the energy spectrum and the limited MLT extent of these features can be explained by energy-dependent drift of particles injected on the night side 24 hours earlier. Particle tracing simulations show that the energetic O+ can originate in the magnetotail, not in the ionosphere. Enhanced wave activity is co-located with the heavy-ion rich plasma a. . .
Date: 09/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL070878 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2016GL070878/abstract
More Details
2015
Authors: Hartley D. P., Chen Y., Kletzing C A, Denton M. H., and Kurth W S
Title: Applying the cold plasma dispersion relation to whistler mode chorus waves: EMFISIS wave measurements from the Van Allen Probes
Abstract: Most theoretical wave models require the power in the wave magnetic field in order to determine the effect of chorus waves on radiation belt electrons. However, researchers typically use the cold plasma dispersion relation to approximate the magnetic wave power when only electric field data are available. In this study, the validity of using the cold plasma dispersion relation in this context is tested using Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations of both the electric and magnetic spectral intensities in the chorus wave band (0.1–0.9 fce). Results from this study indicate that the calculated wave intensity is least accurate during periods of enhanced wave activity. For observed wave intensities >10−3 nT2, using the cold plasma dispersi. . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020808 Available at: http://doi.wiley.com/10.1002/2014JA020808
More Details
Authors: Denton M. H., Thomsen M F, Jordanova V K, Henderson M G, Borovsky J E, et al.
Title: An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit
Abstract: Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite years of observations from the magnetospheric plasma analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local times and 40 energies, at all possible values of Kp. Bilinear interpolation is used between grid points to provide the ion flux and the electron flux values at any energy and local time, and for given values of geomagnetic activity (proxied by the 3 h Kp index), and also for given values of solar activity (proxied. . .
Date: 04/2015 Publisher: Space Weather DOI: 10.1002/2015SW001168 Available at: http://doi.wiley.com/10.1002/2015SW001168
More Details