Biblio

Found 2 results
Filters: Author is Raita, Tero  [Clear All Filters]
2015
Authors: Clilverd Mark A., Duthie Roger, Hardman Rachael, Hendry Aaron T., Rodger Craig J., et al.
Title: Electron precipitation from EMIC waves: a case study from 31 May 2013
Abstract: On 31 May 2013 several rising-tone electromagnetic ion-cyclotron (EMIC) waves with intervals of pulsations of diminishing periods (IPDP) were observed in the magnetic local time afternoon and evening sectors during the onset of a moderate/large geomagnetic storm. The waves were sequentially observed in Finland, Antarctica, and western Canada. Co-incident electron precipitation by a network of ground-based Antarctic Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK) and riometer instruments, as well as the Polar-orbiting Operational Environmental Satellite (POES) electron telescopes, was also observed. At the same time POES detected 30-80 keV proton precipitation drifting westwards at locations that were consistent with the ground-based observations, i. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021090 Available at: http://doi.wiley.com/10.1002/2015JA021090
More Details
Authors: Neal Jason J., Rodger Craig J., Clilverd Mark A., Thomson Neil R., Raita Tero, et al.
Title: Long-term determination of energetic electron precipitation into the atmosphere from AARDDVARK subionospheric VLF observations
Abstract: We analyze observations of subionospherically propagating very low frequency (VLF) radio waves to determine outer radiation belt energetic electron precipitation (EEP) flux magnitudes. The radio wave receiver in Sodankylä, Finland (Sodankylä Geophysical Observatory) observes signals from the transmitter with call sign NAA (Cutler, Maine). The receiver is part of the Antarctic-Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK). We use a near-continuous data set spanning November 2004 until December 2013 to determine the long time period EEP variations. We determine quiet day curves over the entire period and use these to identify propagation disturbances caused by EEP. Long Wave Propagation Code radio wave propagation modeling is used to estimate the p. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020689 Available at: http://doi.wiley.com/10.1002/2014JA020689
More Details