Biblio

Found 3 results
Filters: Author is Vasko, I.  [Clear All Filters]
2018
Authors: Agapitov O., Drake J. F., Vasko I., Mozer F S, Artemyev A., et al.
Title: Nonlinear Electrostatic Steepening of Whistler Waves: The Guiding Factors and Dynamics in Inhomogeneous Systems
Abstract: Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave‐particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high‐amplitude whistlers suggest the importance of nonlinear wave‐particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, pres. . .
Date: 03/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL076957 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2017GL076957
More Details
2016
Authors: Mozer F S, Artemyev A., Agapitov O. V., Mourenas D., and Vasko I.
Title: Near-Relativistic Electron Acceleration by Landau Trapping in Time Domain Structures
Abstract: Data from the Van Allen Probes have provided the first extensive evidence of nonlinear (as opposed to quasi-linear) wave-particle interactions in space with the associated rapid (less than a bounce period) electron acceleration to hundreds of keV by Landau resonance in the parallel electric field of time domain structures (TDSs) traveling at high speeds (~20,000 km/s). This observational evidence is supported by simulations and discussion of the source and spatial extent of the fast TDS. This result indicates the possibility that the electrostatic fields in TDS may generate the electron seed population for cyclotron resonance interaction with chorus waves to make higher-energy electrons.
Date: 01/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL067316 Available at: http://doi.wiley.com/10.1002/2015GL067316
More Details
2015
Authors: Mozer F.S., Agapitov O.V., Artemyev A., Drake J.F., Krasnoselskikh V., et al.
Title: Time Domain Structures: what and where they are, what they do, and how they are made
Abstract: Time Domain Structures (TDS) (electrostatic or electromagnetic electron holes, solitary waves, double layers, etc.) are ≥1 msec pulses having significant parallel (to the background magnetic field) electric fields. They are abundant through space and occur in packets of hundreds in the outer Van Allen radiation belts where they produce magnetic-field-aligned electron pitch angle distributions at energies up to a hundred keV. TDS can provide the seed electrons that are later accelerated to relativistic energies by whistlers and they also produce field-aligned electrons that may be responsible for some types of auroras. These field-aligned electron distributions result from at least three processes. The first process is parallel acceleration by Landau trapping in the TDS parallel electric . . .
Date: 04/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063946 Available at: http://doi.wiley.com/10.1002/2015GL063946
More Details