Found 2 results
Filters: Author is Singer, H.J.  [Clear All Filters]
Authors: Jaynes A.N., Baker D.N., Singer H.J., Rodriguez J.V., Loto'aniu T.M., et al.
Title: Source and Seed Populations for Relativistic Electrons: Their Roles in Radiation Belt Changes
Abstract: Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August-September 2014, we use GOES geostationary orbit electron flux data and Van Allen Probes particle and fields data to study the process of radiation belt electron acceleration. One particular interval, 13-22 September, initiated by a short-lived geomagnetic storm and characterized by a long period of primarily northward IMF, showed strong depletion of. . .
Date: 07/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021234 Available at:
More Details
Authors: Palin L., Jacquey C., Opgenoorth H., Connors M., Sergeev V., et al.
Title: Three-dimensional current systems and ionospheric effects associated with small dipolarisation fronts
Abstract: We present a case study of eight successive plasma sheet (PS) activations (usually referred to as bursty bulk flows or dipolarization fronts ) associated with small individual inline image increases on 31 March 2009 (0200–0900 UT), observed by the THEMIS mission. This series of events happens during very quiet solar wind conditions, over a period of 7 hours preceding a substorm onset at 1230 UT. The amplitude of the dipolarizations increases with time. The low-amplitude dipolarization fronts are associated with few (1 or 2) rapid flux transport events (RFT, Eh > 2mV/m), whereas the large-amplitude ones encompass many more RFT events. All PS activations are associated with small and localized substorm current wedge (SCW) like current system signatures, which seems to be the consequenc. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021040 Available at:
More Details