Found 2 results
Filters: Author is Denton, R. E.  [Clear All Filters]
Authors: Tetrick S. S., Engebretson M. J., Posch J. L., Olson C. N., Smith C W, et al.
Title: Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations
Abstract: We have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 RE relative to the PP. Very few events occurred only within 0.1 RE of the PP, and events with a width in L of < 0.2 REoccurred both inside and outside the PP. Wave occurrence was always associated with high densities of ring current ions; plasma density gradients or enhancements were associated with some events but were not dominant factors in determining the sites of wave generation. Storm main and recovery phase events in the dusk sector were often inside the PP, and dayside events during quiet times and co. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023392 Available at:
More Details
Authors: Wu S., Denton R. E., Liu K., and Hudson M K
Title: One- and two-dimensional hybrid simulations of whistler mode waves in a dipole field
Abstract: We simulate whistler mode waves using a hybrid code. There are four species in the simulations, hot electrons initialized with a bi-Maxwellian distribution with temperature in the direction perpendicular to background magnetic field greater than that in the parallel direction, warm isotropic electrons, cold inertialess fluid electrons, and protons as an immobile background. The density of the hot population is a small fraction of the total plasma density. Comparison between the dispersion relation of our model and other dispersion relations shows that our model is more accurate for lower frequency whistlers than for higher frequency whistlers. Simulations in 2-D Cartesian coordinates agree very well with those using a full dynamics code. In the 1-D simulations along the dipole magnetic fie. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 1908 - 1923 DOI: 10.1002/2014JA020736 Available at:
More Details