Found 3 results
Filters: Author is Kletzing, C.A.  [Clear All Filters]
Authors: Saikin A.A., Jordanova V.K., Zhang J.C., Smith C.W., Spence H.E., et al.
Title: Comparing simulated and observed EMIC wave amplitudes using in situ Van Allen Probes’ measurements
Abstract: We perform a statistical study calculating electromagnetic ion cyclotron (EMIC) wave amplitudes based off in situ plasma measurements taken by the Van Allen Probes’ (1.1–5.8 Re) Helium, Oxygen, Proton, Electron (HOPE) instrument. Calculated wave amplitudes are compared to EMIC waves observed by the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes during the same period. The survey covers a 22-month period (1 November 2012 to 31 August 2014), a full Van Allen Probe magnetic local time (MLT) precession. The linear theory proxy was used to identify EMIC wave events with plasma conditions favorable for EMIC wave excitation. Two hundred and thirty-two EMIC wave events (103 H+-band and 129 He+-band) were selected for this comparison. Nearly . . .
Date: 02/2018 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics DOI: 10.1016/j.jastp.2018.01.024 Available at:
More Details
Authors: Jaynes A.N., Baker D.N., Singer H.J., Rodriguez J.V., Loto'aniu T.M., et al.
Title: Source and Seed Populations for Relativistic Electrons: Their Roles in Radiation Belt Changes
Abstract: Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August-September 2014, we use GOES geostationary orbit electron flux data and Van Allen Probes particle and fields data to study the process of radiation belt electron acceleration. One particular interval, 13-22 September, initiated by a short-lived geomagnetic storm and characterized by a long period of primarily northward IMF, showed strong depletion of. . .
Date: 07/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021234 Available at:
More Details
Authors: Thaller S. A., Wygant J R, Dai L., Breneman A.W., Kersten K., et al.
Title: Van Allen Probes investigation of the large scale duskward electric field and its role in ring current formation and plasmasphere erosion in the June 1, 2013 storm
Abstract: Using the Van Allen Probes we investigate the enhancement in the large scale duskward convection electric field during the geomagnetic storm (Dst ~ −120 nT) on June 1, 2013 and its role in ring current ion transport and energization, and plasmasphere erosion. During this storm, enhancements of ~1-2 mV/m in the duskward electric field in the co-rotating frame are observed down to L shells as low as ~2.3. A simple model consisting of a dipole magnetic field and constant, azimuthally westward, electric field is used to calculate the earthward and westward drift of 90° pitch angle ions. This model is applied to determine how far earthward ions can drift while remaining on Earth's night side, given the strength and duration of the convection electric field. The calculation based on this simp. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020875 Available at:
More Details