Biblio

Found 4 results
Filters: Author is Degeling, A. W.  [Clear All Filters]
2018
Authors: Wang C., Rankin R, Wang Y., Zong Q.-G., Zhou X., et al.
Title: Poloidal mode wave-particle interactions inferred from Van Allen Probes and CARISMA ground-based observations
Abstract: Ultra‐low‐frequency (ULF) wave and test particle models are used to investigate the pitch angle and energy dependence of ion differential fluxes measured by the Van Allen Probes spacecraft on October 6th, 2012. Analysis of the satellite data reveals modulations in differential flux resulting from drift resonance between H+ ions and fundamental mode poloidal Alfvén waves detected near the magnetic equator at L∼5.7. Results obtained from simulations reproduce important features of the observations, including a substantial enhancement of the differential flux between ∼20° − 40° pitch angle for ion energies between ∼90 − 220keV, and an absence of flux modulations at 90°. The numerical results confirm predictions of drift‐bounce resonance theory and show good quantit. . .
Date: 05/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA025123 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2017JA025123
More Details
2014
Authors: Degeling A W, Rankin R, and Zong Q.-G.
Title: Modeling radiation belt electron acceleration by ULF fast mode waves, launched by solar wind dynamic pressure fluctuations
Abstract: We investigate the magnetospheric MHD and energetic electron response to a Storm Sudden Commencement (SSC) and subsequent magnetopause buffeting, focusing on an interval following an SSC event on 25 November 2001. We find that the electron flux signatures observed by LANL, Cluster, and GOES spacecraft during this event can largely be reproduced using an advective kinetic model for electron phase space density, using externally prescribed electromagnetic field inputs, (herein described as a “test-kinetic model”) with electromagnetic field inputs provided by a 2-D linear ideal MHD model for ULF waves. In particular, we find modulations in electron flux phase shifted by 90° from the local azimuthal ULF wave electric field (Eφ) and a net enhancement in electron flux after 1.5 h for energ. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2013JA019672 Available at: http://doi.wiley.com/10.1002/2013JA019672
More Details
2008
Authors: Degeling A W, and Rankin R
Title: Resonant drift echoes in electron phase space density produced by dayside Pc5 waves following a geomagnetic storm
Abstract: [1] The interaction between relativistic, equatorially mirroring electrons and Pc5 Ultra Low Frequency (ULF) waves in the magnetosphere is investigated using a numerical MagnetoHydroDynamic (MHD) model for waves and a test-kinetic model for electron phase space density (PSD). The temporal and spatial characteristics of a ULF wave packet are constrained using ground-based observations of narrowband ULF activity following a geomagnetic storm on 24 March 1991, which occurred from 1200 to 1340 Universal Time (UT). A salient feature of the ULF waves during this interval was the apparent localization of the ULF wave power to the dayside of the magnetosphere and the antisunward propagation of ULF wave phase in the morning and afternoon sectors. This is interpreted to imply a localized source of U. . .
Date: 10/2008 Publisher: Journal of Geophysical Research DOI: 10.1029/2008JA013254 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2008JA013254/abstract
More Details
2007
Authors: Degeling A W, Rankin R, Kabin K, Marchand R, and Mann I R
Title: The effect of ULF compressional modes and field line resonances on relativistic electron dynamics
Abstract: The adiabatic, drift-resonant interaction between relativistic, equatorially mirroring electrons and a ULF compressional wave that couples to a field line resonance (FLR) is modelled. Investigations are focussed on the effect of azimuthal localisation in wave amplitude on the electron dynamics. The ULF wave fields on the equatorial plane (r , φ ) are modelled using a box model [Zhu, X., Kivelson, M.G., 1988. Analytic formulation and quantitative solutions of the coupled ULF wave problem. J. Geophys. Res. 93(A8), 8602–8612], and azimuthal variations are introduced by adding a discrete spectrum of azimuthal modes. Electron trajectories are calculated using drift equations assuming constant magnetic moment M , and the evolution of the distribution function f(r,φ,M,t) from an assumed in. . .
Date: 04/2007 Publisher: Planetary and Space Science Pages: 731 - 742 DOI: 10.1016/j.pss.2006.04.039 Available at: http://www.sciencedirect.com/science/article/pii/S0032063306002893
More Details