Biblio

Found 4 results
Filters: Author is Posch, J. L.  [Clear All Filters]
2018
Authors: Engebretson M. J., Posch J. L., Braun D. J., Li W, Ma Q, et al.
Title: EMIC wave events during the four GEM QARBM challenge intervals
Abstract: This paper presents observations of EMIC waves from multiple data sources during the four GEM challenge events in 2013 selected by the GEM “Quantitative Assessment of Radiation Belt Modeling” focus group: March 17‐18 (Stormtime Enhancement), May 31‐June 2 (Stormtime Dropout), September 19‐20 (Non‐storm Enhancement), and September 23‐25 (Non‐storm Dropout). Observations include EMIC wave data from the Van Allen Probes, GOES, and THEMIS spacecraft in the near‐equatorial magnetosphere and from several arrays of ground‐based search coil magnetometers worldwide, as well as localized ring current proton precipitation data from low‐altitude POES spacecraft. Each of these data sets provides only limited spatial coverage, but their combination shows consistent occurrence patte. . .
Date: 07/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025505 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025505
More Details
Authors: Engebretson M. J., Posch J. L., Capman N. S. S., Campuzano N. G., ělik P., et al.
Title: MMS, Van Allen Probes, GOES 13, and Ground Based Magnetometer Observations of EMIC Wave Events Before, During, and After a Modest Interplanetary Shock
Abstract: The stimulation of EMIC waves by a magnetospheric compression is perhaps the closest thing to a controlled experiment that is currently possible in magnetospheric physics, in that one prominent factor that can increase wave growth acts at a well‐defined time. We present a detailed analysis of EMIC waves observed in the outer dayside magnetosphere by the four Magnetosphere Multiscale (MMS) spacecraft, Van Allen Probe A, and GOES 13, and by four very high latitude ground magnetometer stations in the western hemisphere before, during, and after a modest interplanetary shock on December 14, 2015. Analysis shows several features consistent with current theory, as well as some unexpected features. During the most intense MMS wave burst, which began ~ 1 min after the end of a brief magnetosheat. . .
Date: 09/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025984 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025984
More Details
2017
Authors: Tetrick S. S., Engebretson M. J., Posch J. L., Olson C. N., Smith C W, et al.
Title: Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations
Abstract: We have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 RE relative to the PP. Very few events occurred only within 0.1 RE of the PP, and events with a width in L of < 0.2 REoccurred both inside and outside the PP. Wave occurrence was always associated with high densities of ring current ions; plasma density gradients or enhancements were associated with some events but were not dominant factors in determining the sites of wave generation. Storm main and recovery phase events in the dusk sector were often inside the PP, and dayside events during quiet times and co. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023392 Available at: http://doi.wiley.com/10.1002/2016JA023392
More Details
2015
Authors: Engebretson M. J., Posch J. L., Wygant J R, Kletzing C A, Lessard M. R., et al.
Title: Van Allen probes, NOAA, GOES, and ground observations of an intense EMIC wave event extending over 12 hours in MLT
Abstract: Although most studies of the effects of EMIC waves on Earth's outer radiation belt have focused on events in the afternoon sector in the outer plasmasphere or plume region, strong magnetospheric compressions provide an additional stimulus for EMIC wave generation across a large range of local times and L shells. We present here observations of the effects of a wave event on February 23, 2014 that extended over 8 hours in UT and over 12 hours in local time, stimulated by a gradual 4-hour rise and subsequent sharp increases in solar wind pressure. Large-amplitude linearly polarized hydrogen band EMIC waves (up to 25 nT p-p) appeared for over 4 hours at both Van Allen Probes, from late morning through local noon, when these spacecraft were outside the plasmapause, with densities ~5-20 cm-3. W. . .
Date: 06/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021227 Available at: http://doi.wiley.com/10.1002/2015JA021227
More Details