Found 3 results
Filters: Author is Farrugia, C. J.  [Clear All Filters]
Authors: Bingham S. T., Mouikis C. G., Kistler L. M., Boyd A. J., Paulson K., et al.
Title: The outer radiation belt response to the storm time development of seed electrons and chorus wave activity during CME and CIR storms
Abstract: Gyroresonant wave‐particle interactions with very low frequency whistler mode chorus waves can accelerate subrelativistic seed electrons (hundreds of keV) to relativistic energies in the outer radiation belt during geomagnetic storms. In this study, we conduct a superposed epoch analysis of the chorus wave activity, the seed electron development, and the outer radiation belt electron response between L* = 2.5 and 5.5, for 25 coronal mass ejection and 35 corotating interaction region storms using Van Allen Probes observations. Electron data from the Magnetic Electron Ion Spectrometer and Relativistic Electron Proton Telescope instruments are used to monitor the storm‐phase development of the seed and relativistic electrons, and magnetic field measurements from the Electric and Magnetic . . .
Date: 12/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025963 Available at:
More Details
Authors: Matsui H., Torbert R B, Spence H E, Argall M. R., Alm L., et al.
Title: Relativistic electron increase during chorus wave activities on the 6-8 March 2016 geomagnetic storm
Abstract: There was a geomagnetic storm on 6–8 March 2016, in which Van Allen Probes A and B separated by ∼2.5 h measured increase of relativistic electrons with energies ∼ several hundred keV to 1 MeV. Simultaneously, chorus waves were measured by both Van Allen Probes and Magnetospheric Multiscale (MMS) mission. Some of the chorus elements were rising-tones, possibly due to nonlinear effects. These measurements are compared with a nonlinear theory of chorus waves incorporating the inhomogeneity ratio and the field equation. From this theory, a chorus wave profile in time and one-dimensional space is simulated. Test particle calculations are then performed in order to examine the energization rate of electrons. Some electrons are accelerated, although more electrons are decelerated. The measu. . .
Date: 10/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024540 Available at:
More Details
Authors: Lugaz N., Farrugia C. J., Huang C.-L., and Spence H E
Title: Extreme geomagnetic disturbances due to shocks within CMEs
Abstract: We report on features of solar wind-magnetosphere coupling elicited by shocks propagating through coronal mass ejections (CMEs) by analyzing the intense geomagnetic storm of 6 August 1998. During this event, the dynamic pressure enhancement at the shock combined with a simultaneous increase in the southward component of the magnetic field resulted in a large earthward retreat of Earth's magnetopause, which remained close to geosynchronous orbit for more than 4 h. This occurred despite the fact that both shock and CME were weak and relatively slow. Another similar example of a weak shock inside a slow CME resulting in an intense geomagnetic storm is the 30 September 2012 event, which strongly depleted the outer radiation belt. We discuss the potential of shocks inside CMEs to cause large . . .
Date: 06/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064530 Available at:
More Details