Found 2 results
Filters: Author is Moya, P. S.  [Clear All Filters]
Authors: Pinto V. A., Mourenas D., Bortnik J, Zhang X.‐J., Artemyev A. V., et al.
Title: Decay of Ultrarelativistic Remnant Belt Electrons Through Scattering by Plasmaspheric Hiss
Abstract: Ultrarelativistic electron remnant belts appear frequently following geomagnetic disturbances and are located in‐between the inner radiation belt and a reforming outer belt. As remnant belts are relatively stable, here we explore the importance of hiss and electromagnetic ion cyclotron waves in controlling the observed decay rates of remnant belt ultrarelativistic electrons in a statistical way. Using measurements from the Van Allen Probes inside the plasmasphere for 25 remnant belt events that occurred between 2012 and 2017 and that are located in the region 2.9Date: Dec-07-2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026509 Available at:
More Details
Authors: Korotova G. I., Sibeck D G, Tahakashi K., Dai L., Spence H E, et al.
Title: Van Allen Probe observations of drift-bounce resonances with Pc 4 pulsations and wave–particle interactions in the pre-midnight inner magnetosphere
Abstract: We present Van Allen Probe B observations of azimuthally limited, antisymmetric, poloidal Pc 4 electric and magnetic field pulsations in the pre-midnight sector of the magnetosphere from 05:40 to 06:00 UT on 1 May 2013. Oscillation periods were similar for the magnetic and electric fields and proton fluxes. The flux of energetic protons exhibited an energy-dependent response to the pulsations. Energetic proton variations were anticorrelated at medium and low energies. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes results from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.
Date: 01/2015 Publisher: Annales Geophysicae Pages: 955 - 964 DOI: 10.5194/angeo-33-955-2015 Available at:
More Details