Biblio

Found 2 results
Filters: Author is Hao, Yi-Xin  [Clear All Filters]
2018
Authors: Li Li, Zhou Xu-Zhi, Omura Yoshiharu, Wang Zi-Han, Zong Qiu-Gang, et al.
Title: Nonlinear drift resonance between charged particles and ultra-low frequency waves: Theory and Observations
Abstract: In Earth's inner magnetosphere, electromagnetic waves in the ultra‐low frequency (ULF) range play an important role in accelerating and diffusing charged particles via drift resonance. In conventional drift‐resonance theory, linearization is applied under the assumption of weak wave‐particle energy exchange so particle trajectories are unperturbed. For ULF waves with larger amplitudes and/or durations, however, the conventional theory becomes inaccurate since particle trajectories are strongly perturbed. Here, we extend the drift‐resonance theory into a nonlinear regime, to formulate nonlinear trapping of particles in a wave‐carried potential well, and predict the corresponding observable signatures such as rolled‐up structures in particle energy spectrum. After considering how. . .
Date: 08/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL079038 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL079038
More Details
2015
Authors: Zhou Xu-Zhi, Wang Zi-Han, Zong Qiu-Gang, Claudepierre Seth G., Mann Ian R., et al.
Title: Imprints of impulse-excited hydromagnetic waves on electrons in the Van Allen radiation belts
Abstract: Ultralow frequency electromagnetic oscillations, interpreted as standing hydromagnetic waves in the magnetosphere, are a major energy source that accelerates electrons to relativistic energies in the Van Allen radiation belt. Electrons can rapidly gain energy from the waves when they resonate via a process called drift resonance, which is observationally characterized by energy-dependent phase differences between electron flux and electromagnetic oscillations. Such dependence has been recently observed and interpreted as spacecraft identifications of drift resonance electron acceleration. Here we show that in the initial wave cycles, the observed phase relationship differs from that characteristic of well-developed drift resonance. We further examine the differences and find that they are . . .
Date: 08/2015 Publisher: Geophysical Research Letters Pages: 6199 - 6204 DOI: 10.1002/grl.v42.1510.1002/2015GL064988 Available at: http://doi.wiley.com/10.1002/grl.v42.15http://doi.wiley.com/10.1002/2015GL064988
More Details