Found 2 results
Filters: Author is Cao, Xing  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Authors: Cao Xing, Ni Binbin, Summers Danny, Zou Zhengyang, Fu Song, et al.
Title: Bounce resonance scattering of radiation belt electrons by low-frequency hiss: Comparison with cyclotron and Landau resonances
Abstract: Bounce-resonant interactions with magnetospheric waves have been proposed as important contributing mechanisms for scattering near-equatorially mirroring electrons by violating the second adiabatic invariant associated with the electron bounce motion along a geomagnetic field line. This study demonstrates that low-frequency plasmaspheric hiss with significant wave power below 100 Hz can bounce-resonate efficiently with radiation belt electrons. By performing quantitative calculations of pitch-angle scattering rates, we show that low-frequency hiss induced bounce-resonant scattering of electrons has a strong dependence on equatorial pitch-angle αeq. For electrons with αeq close to 90°, the timescale associated with bounce resonance scattering can be comparable to or even less than 1 hour. . .
Date: 09/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL075104 Available at:
More Details
Authors: Cao Xing, Ni Binbin, Summers Danny, Shprits Yuri Y, Gu Xudong, et al.
Title: Sensitivity of EMIC Wave-Driven Scattering Loss of Ring Current Protons to Wave Normal Angle Distribution
Abstract: Electromagnetic ion cyclotron waves have long been recognized to play a crucial role in the dynamic loss of ring current protons. While the field‐aligned propagation approximation of electromagnetic ion cyclotron waves was widely used to quantify the scattering loss of ring current protons, in this study, we find that the wave normal distribution strongly affects the pitch angle scattering efficiency of protons. Increase of peak normal angle or angular width can considerably reduce the scattering rates of ≤10 keV protons. For >10 keV protons, the field‐aligned propagation approximation results in a pronounced underestimate of the scattering of intermediate equatorial pitch angle protons and overestimates the scattering of high equatorial pitch angle protons by orders of magnitude. Ou. . .
Date: 01/2019 Publisher: Geophysical Research Letters Pages: 590 - 598 DOI: 10.1029/2018GL081550 Available at:
More Details