Biblio

Found 3 results
Filters: Author is Gao, Zhonglei  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
G
Authors: Gao Zhonglei, Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, et al.
Title: Intense low-frequency chorus waves observed by Van Allen Probes: Fine structures and potential effect on radiation belt electrons
Abstract: Frequency distribution is a vital factor in determining the contribution of whistler-mode chorus to radiation belt electron dynamics. Chorus is usually considered to occur in the frequency range 0.1–0.8 inline image (with the equatorial electron gyrofrequency inline image). We here report an event of intense low-frequency chorus with nearly half of wave power distributed below 0.1 inline image observed by Van Allen Probe A on 27 August 2014. This emission propagated quasi-parallel to the magnetic field and exhibited hiss-like signatures most of the time. The low-frequency chorus can produce the rapid loss of low-energy (∼0.1 MeV) electrons, different from the normal chorus. For high-energy (≥0.5 MeV) electrons, the low-frequency chorus can yield comparable momentum diffusion to tha. . .
Date: 02/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL067687 Available at: http://doi.wiley.com/10.1002/2016GL067687
More Details
Authors: Gao Zhonglei, Su Zhenpeng, Chen Lunjin, Zheng Huinan, Wang Yuming, et al.
Title: Van Allen Probes observations of whistler-mode chorus with long-lived oscillating tones
Abstract: Whistler-mode chorus plays an important role in the radiation belt electron dynamics. In the frequency-time spectrogram, chorus often appears as a hiss-like band and/or a series of short-lived (up to ∼1 s) discrete elements. Here we present some rarely reported chorus emissions with long-lived (up to 25 s) oscillating tones observed by the Van Allen Probes in the dayside (MLT ∼9–14) midlatitude (|MLAT|>15°) region. An oscillating tone can behave either regularly or irregularly and can even transform into a nearly constant tone (with a relatively narrow frequency sweep range). We suggest that these highly coherent oscillating tones were generated naturally rather than being related to some artificial VLF transmitters. Possible scenarios for the generation of the oscillating tone chor. . .
Date: 06/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL073420 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL073420/full
More Details
Authors: Gao Zhonglei, Su Zhenpeng, Xiao Fuliang, Summers Danny, Liu Nigang, et al.
Title: Nonlinear coupling between whistler-mode chorus and electron cyclotron harmonic waves in the magnetosphere
Abstract: Electromagnetic whistler‐mode chorus and electrostatic electron cyclotron harmonic (ECH) waves can contribute significantly to auroral electron precipitation and radiation belt electron acceleration. In the past, linear and nonlinear wave‐particle interactions have been proposed to explain the occurrences of these magnetospheric waves. By analyzing Van Allen Probes data, we present here the first evidence for nonlinear coupling between chorus and ECH waves. The sum‐frequency and difference‐frequency interactions produced the ECH sidebands with discrete frequency sweeping structures exactly corresponding to the chorus rising tones. The newly‐generated weak sidebands did not satisfy the original electrostatic wave dispersion relation. After the generation of chorus and normal ECH w. . .
Date: 11/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL080635 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080635
More Details