Found 6 results
Filters: Author is Lejosne, ène  [Clear All Filters]
Authors: Roederer Juan G., and Lejosne ène
Title: Coordinates for Representing Radiation Belt Particle Flux
Abstract: Fifty years have passed since the parameter “L-star” was introduced in geomagnetically trapped particle dynamics. It is thus timely to review the use of adiabatic theory in present-day studies of the radiation belts, with the intention of helping to prevent common misinterpretations and the frequent confusion between concepts like “distance to the equatorial point of a field line,” McIlwain's L-value, and the trapped particle's adiabatic L* parameter. And too often do we miss in the recent literature a proper discussion of the extent to which some observed time and space signatures of particle flux could simply be due to changes in magnetospheric field, especially insofar as off-equatorial particles are concerned. We present a brief review on the history of radiation belt parameter. . .
Date: 02/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA025053 Available at:
More Details
Authors: Lejosne ène, Kunduri B. S. R., Mozer F S, and Turner D. L.
Title: Energetic electron injections deep into the inner magnetosphere: a result of the subauroral polarization stream (SAPS) potential drop
Abstract: It has been reported that the dynamics of energetic (tens to hundreds of keV) electrons and ions is inconsistent with the theoretical picture in which the large‐scale electric field is a superposition of corotation and convection electric fields. Combining one year of measurements by the Super Dual Auroral Radar Network, DMSP F‐18 and the Van Allen Probes, we show that subauroral polarization streams are observed when energetic electrons have penetrated below L = 4. Outside the plasmasphere in the premidnight region, potential energy is subtracted from the total energy of ions and added to the total energy of electrons during SAPS onset. This potential energy is converted into radial motion as the energetic particles drift around Earth and leave the SAPS azimuthal sector. As a result, . . .
Date: 04/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077969 Available at:
More Details
Authors: Lejosne ène, and Mozer F S
Title: Magnetic activity dependence of the electric drift below L=3
Abstract: More than two years of magnetic and electric field measurements by the Van Allen Probes are analyzed with the objective of determining the average effects of magnetic activity on the electric drift below L=3. The study finds that an increase in magnetospheric convection leads to a decrease in the magnitude of the azimuthal component of the electric drift, especially in the night‐side. The amplitude of the slowdown is a function of L, local time MLT, and Kp, in a pattern consistent with the storm‐time dynamics of the ionosphere and thermosphere. To a lesser extent, magnetic activity also alters the average radial component of the electric drift below L=3. A global picture for the average variations of the electric drift with Kp is provided as a function of L and MLT. It is the first tim. . .
Date: 04/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077873 Available at:
More Details
Authors: Lejosne ène, Maus Stefan, and Mozer F S
Title: Model-observation comparison for the geographic variability of the plasma electric drift in the Earth's innermost magnetosphere
Abstract: Plasmaspheric rotation is known to lag behind Earth rotation. The causes for this corotation lag are not yet fully understood. We have used more than two years of Van Allen Probe observations to compare the electric drift measured below L~2 with the predictions of a general model. In the first step, a rigid corotation of the ionosphere with the solid Earth was assumed in the model. The results of the model-observation comparison are twofold: (1) radially, the model explains the average observed geographic variability of the electric drift; (2) azimuthally, the model fails to explain the full amplitude of the observed corotation lag. In the second step, ionospheric corotation was modulated in the model by thermospheric winds, as given by the latest version of the Horizontal Wind Model (HWM1. . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074862 Available at:
More Details
Authors: Lejosne ène, and Mozer F S
Title: Sub-Auroral Polarization Stream (SAPS) duration as determined from Van Allen Probe successive electric drift measurements
Abstract: We examine a characteristic feature of the magnetosphere-ionosphere coupling, namely, the persistent and latitudinally narrow bands of rapid westward ion drifts called the Sub-Auroral Polarization Streams (SAPS). Despite countless works on SAPS, information relative to their durations is lacking. Here, we report on the first statistical analysis of more than 200 near-equatorial SAPS observations based on more than two years of Van Allen Probe electric drift measurements. First, we present results relative to SAPS radial locations and amplitudes. Then, we introduce two different ways to estimate SAPS durations. In both cases, SAPS activity is estimated to last for about nine hours on average. However, our estimates for SAPS duration are limited either by the relatively long orbital periods . . .
Date: 08/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074985 Available at: http://
More Details
Authors: Lejosne ène, and Mozer F S
Title: Typical values of the electric drift E  ×  B / B 2 in the inner radiation belt and slot region as determined from Van Allen Probe measurements
Abstract: The electric drift E × B/B2 plays a fundamental role for the description of plasma flow and particle acceleration. Yet it is not well-known in the inner belt and slot region because of a lack of reliable in situ measurements. In this article, we present an analysis of the electric drifts measured below L ~ 3 by both Van Allen Probes A and B from September 2012 to December 2014. The objective is to determine the typical components of the equatorial electric drift in both radial and azimuthal directions. The dependences of the components on radial distance, magnetic local time, and geographic longitude are examined. The results from Van Allen Probe A agree with Van Allen Probe B. They show, among other things, a typical corotation lag of the order of 5 to 10% below L ~ 2.6, as w. . .
Date: 12/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023613 Available at:
More Details