Biblio

Found 2 results
Filters: Author is Chelpanov, Maksim A.  [Clear All Filters]
2019
Authors: Mager Olga V., Chelpanov Maksim A., Mager Pavel N., Klimushkin Dmitri Yu., and Berngardt Oleg I.
Title: Conjugate Ionosphere‐Magnetosphere Observations of a Sub‐Alfvénic Compressional Intermediate‐ m Wave: A Case Study Using EKB Radar and Van Allen Probes
Abstract: A Pc5 wave was simultaneously observed in the ionosphere by EKB radar and in the magnetosphere by both Van Allen Probe spacecraft within a substorm activity. The wave was located in the nightside, in 1.5‐ to 3‐hr magnetic local time sector, and in the region corresponding to the magnetic shells with maximal distances 4.6–7.8 Earth's radii. As it was found using both the radar and spacecraft data, the wave had frequency of about 1.8 mHz and azimuthal wave number m≈−10; that is, the wave was westward propagating. The EKB radar data revealed the equatorward wave propagating in the ionosphere, which corresponded to the earthward propagation in the magnetosphere. Furthermore, the field‐aligned magnetic component was approximately 2 times larger than both transverse components and ac. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026541 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026541
More Details
2016
Authors: Chelpanov Maksim A., Mager Pavel N., Klimushkin Dmitri Yu., Berngardt Oleg I., and Mager Olga V.
Title: Experimental evidence of drift compressional waves in the magnetosphere: an Ekaterinburg coherent decameter radar case study
Abstract: A case study of shortwave radar observations of magnetospheric Pc5 ULF waves (wave periods of 150–600 s) that occurred on 26 December 2014 in the nightside magnetosphere during substorm activity is presented. The radar study of waves in the magnetosphere is based on analysis of scattering from field-aligned irregularities of the ionospheric F layer. Variations of their inline image drift velocity at F layer heights are associated with the wave electric field. Analysis of the observations from the Ekaterinburg (EKB) radar shows that the frequency f of the observed wave depends on the azimuthal wave number m (positive correlation of about 0.90): an increase in frequency from 2.5 to 5 mHz corresponds to increased m number from 20 to 80. Of the known types of waves in the magnetosphere corre. . .
Date: 02/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA022155 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2015JA022155/full
More Details