Found 3 results
Filters: Author is Nomura, R.  [Clear All Filters]
Authors: é M., Matsuoka A., Kumamoto A., Kasahara Y., Goldstein J, et al.
Title: Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A
Abstract: Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00–07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9–5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15% O+ ions. Probe A moved outbound from L = 2.0 to 6.2 in the afternoon sector during 04:10–07:30 UT and observed no clear enhancements in the average plasma mass. For this event, the O+ density enhancement in the inner magnetosphere (i.e., oxygen torus) does not extend over all MLT but is skewed tow. . .
Date: 10/2018 Publisher: Geophysical Research Letters Pages: 10,177 - 10,184 DOI: 10.1029/2018GL080122 Available at:
More Details
Authors: Ozaki M., Shiokawa K., Miyoshi Y, Kataoka R., Yagitani S., et al.
Title: Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes
Abstract: To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N2+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroral intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of sec. . .
Date: 08/2016 Publisher: Geophysical Research Letters Pages: 7859 - 7866 DOI: 10.1002/2016GL070008 Available at:
More Details
Authors: Nomura R., Shiokawa K., Omura Y., Ebihara Y., Miyoshi Y, et al.
Title: Pulsating proton aurora caused by rising tone Pc1 waves
Abstract: We found rising tone emissions with a dispersion of ∼1 Hz per several tens of seconds in the dynamic spectrum of a Pc1 geomagnetic pulsation (Pc1) observed on the ground. These Pc1 rising tones were successively observed over ∼30 min from 0250 UT on 14 October 2006 by an induction magnetometer at Athabasca, Canada (54.7°N, 246.7°E, magnetic latitude 61.7°N). Simultaneously, a Time History of Events and Macroscale Interactions during Substorms panchromatic (THEMIS) all-sky camera detected pulsations of an isolated proton aurora with a period of several tens of seconds, ∼10% variations in intensity, and fine structures of 3° in magnetic longitudes. The pulsations of the proton aurora close to the zenith of ATH have one-to-one correspondences with the Pc1 rising tones. This suggests. . .
Date: 02/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA021681 Available at:
More Details