Biblio

Found 4 results
Filters: Author is Kim, H.  [Clear All Filters]
2019
Authors: Soto-Chavez A. R., Lanzerotti L J, Manweiler J W, Gerrard A., Cohen R., et al.
Title: Observational evidence of the drift-mirror plasma instability in Earth's inner magnetosphere
Abstract: We report on evidence for the generation of an ultra-low frequency plasma wave by the drift-mirror plasma instability in the dynamic plasma environment of Earth's inner magnetosphere. The plasma measurements are obtained from the Radiation Belt Storm Probes Ion Composition Experiment onboard NASA's Van Allen Probes Satellites. We show that the measured wave-particle interactions are driven by the drift-mirror instability. Theoretical analysis of the data demonstrates that the drift-mirror mode plasma instability condition is well satisfied. We also demonstrate, for the first time, that the measured wave growth rate agrees well with the predicted linear theory growth rate. Hence, the in-situ space plasma observations and theoretical analysis demonstrate that local generation of ultra-low fr. . .
Date: 04/2019 Publisher: Physics of Plasmas Pages: 042110 DOI: 10.1063/1.5083629 Available at: https://doi.org/10.1063/1.5083629
More Details
2018
Authors: Engebretson M. J., Posch J. L., Capman N. S. S., Campuzano N. G., ělik P., et al.
Title: MMS, Van Allen Probes, GOES 13, and Ground Based Magnetometer Observations of EMIC Wave Events Before, During, and After a Modest Interplanetary Shock
Abstract: The stimulation of EMIC waves by a magnetospheric compression is perhaps the closest thing to a controlled experiment that is currently possible in magnetospheric physics, in that one prominent factor that can increase wave growth acts at a well‐defined time. We present a detailed analysis of EMIC waves observed in the outer dayside magnetosphere by the four Magnetosphere Multiscale (MMS) spacecraft, Van Allen Probe A, and GOES 13, and by four very high latitude ground magnetometer stations in the western hemisphere before, during, and after a modest interplanetary shock on December 14, 2015. Analysis shows several features consistent with current theory, as well as some unexpected features. During the most intense MMS wave burst, which began ~ 1 min after the end of a brief magnetosheat. . .
Date: 09/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025984 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025984
More Details
2017
Authors: Cho J.-H., Lee D.-Y., Noh S.-J., Kim H., Choi C. R., et al.
Title: Spatial dependence of electromagnetic ion cyclotron waves triggered by solar wind dynamic pressure enhancements
Abstract: In this paper, using the multisatellite (the Van Allen Probes and two GOES satellites) observations in the inner magnetosphere, we examine two electromagnetic ion cyclotron (EMIC) wave events that are triggered by Pdyn enhancements under prolonged northward interplanetary magnetic field quiet time preconditions. For both events, the impact of enhanced Pdyn causes EMIC waves at multiple points. However, we find a strong spatial dependence that EMIC waves due to enhanced Pdyn impact can occur at multiple points (likely globally but not necessarily everywhere) but with different wave properties. For Event 1, three satellites situated at a nearly same dawnside zone but at slightly different L shells see occurrence of EMIC waves but in different frequencies relative to local ion gyrofrequencies. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023827 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023827/full
More Details
2016
Authors: Soto-Chavez A. R., Lanzerotti L J, Gerrard A., Kim H., Bortnik J, et al.
Title: RBSPICE measurement of ion loss during the 2015 March storm: Adiabatic response to the geomagnetic field change
Abstract: A strongly energy-dependent ring current ion loss was measured by the RBSPICE instrument on the Van Allen Probes A spacecraft in the local evening sector during the 17 March 2015 geomagnetic storm. The ion loss is found to be energy dependent where only ions with energies measured above ∼ 150 keV have a significant drop in intensity. At these energies the ion dynamics are principally controlled by variations of the geomagnetic field which, during magnetic storms, exhibits large scale variations on timescales from minutes to hours. Here we show that starting from ∼ 19:10 UTC on March 17 the geomagnetic field increased from 220 to 260 nT on a time scale of about an hour as captured by RBSPICE-A close to spacecraft apogee, L = 6.1 and MLT = 21.85 hr. [GSM coordinates X=-4.89, Y=3.00, . . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022512 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022512/abstract
More Details