Biblio

Found 7 results
Filters: Author is Jeffery, Christopher A.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Diffusion Coefficient
Authors: Yu Yiqun, Jordanova Vania K., Ridley Aaron J., Albert Jay M, Horne Richard B, et al.
Title: A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model
Abstract: Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionospheric altitude for solving the ionospheric electrodynamics. In particular, we use . . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022585 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022585/full
More Details
electron lifetime
Authors: Yu Yiqun, Jordanova Vania K., Ridley Aaron J., Albert Jay M, Horne Richard B, et al.
Title: A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model
Abstract: Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionospheric altitude for solving the ionospheric electrodynamics. In particular, we use . . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022585 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022585/full
More Details
electron precipitation
Authors: Yu Yiqun, Jordanova Vania K., Ridley Aaron J., Albert Jay M, Horne Richard B, et al.
Title: A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model
Abstract: Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionospheric altitude for solving the ionospheric electrodynamics. In particular, we use . . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022585 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022585/full
More Details
ionospheric conductivity
Authors: Yu Yiqun, Jordanova Vania K., Ridley Aaron J., Albert Jay M, Horne Richard B, et al.
Title: A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model
Abstract: Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionospheric altitude for solving the ionospheric electrodynamics. In particular, we use . . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022585 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022585/full
More Details
MI coupling
Authors: Yu Yiqun, Jordanova Vania K., Ridley Aaron J., Albert Jay M, Horne Richard B, et al.
Title: A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model
Abstract: Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionospheric altitude for solving the ionospheric electrodynamics. In particular, we use . . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022585 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022585/full
More Details
Van Allen Probes
Authors: Yu Yiqun, Jordanova Vania K., Ridley Aaron J., Albert Jay M, Horne Richard B, et al.
Title: A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model
Abstract: Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionospheric altitude for solving the ionospheric electrodynamics. In particular, we use . . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022585 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022585/full
More Details
wave-particle interactions
Authors: Yu Yiqun, Jordanova Vania K., Ridley Aaron J., Albert Jay M, Horne Richard B, et al.
Title: A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model
Abstract: Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionospheric altitude for solving the ionospheric electrodynamics. In particular, we use . . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022585 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022585/full
More Details