Biblio

Found 107 results
Filters: Author is Kletzing, C. A.  [Clear All Filters]
2019
Authors: Gkioulidou Matina, Ohtani S, Ukhorskiy A Y, Mitchell D G, Takahashi K., et al.
Title: Low-Energy (+ Ion Outflow Directly Into the Inner Magnetosphere: Van Allen Probes Observations
Abstract: The heavy ion component of the low‐energy (eV to hundreds of eV) ion population in the inner magnetosphere, also known as the O+ torus, is a crucial population for various aspects of magnetospheric dynamics. Yet even though its existence has been known since the 1980s, its formation remains an open question. We present a comprehensive study of a low‐energy (Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 405 - 419 DOI: 10.1029/2018JA025862 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025862
More Details
Authors: Thaller S. A., Wygant J R, Cattell C. A., Breneman A. W., Tyler E., et al.
Title: Solar rotation period driven modulations of plasmaspheric density and convective electric field in the inner magnetosphere
Abstract: This paper presents the first analysis of Van Allen Probes measurements of the cold plasma density and electric field in the inner magnetosphere to show that intervals of strong modulation at the solar rotation period occur in the locations of the outer plasmasphere and plasmapause (~0.7 RE peak‐to‐peak), in the large‐scale electric field (~0.24 mV/m peak‐to‐peak), and in the cold plasma density (~250 cm‐3 – ~70 cm‐3 peak‐to‐peak). Solar rotation modulation of the inner magnetosphere is more apparent in the declining phase of the solar cycle than near solar maximum. The periodicities in these parameters are compared to solar EUV irradiance, solar wind dawn‐dusk electric field, and Kp. The variations in the plasmapause location at the solar rotation period anti‐corre. . .
Date: 02/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026365 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026365
More Details
Authors: Hartley D. P., Kletzing C A, Chen L, Horne R B, and ík O.
Title: Van Allen Probes observations of chorus wave vector orientations: Implications for the chorus-to-hiss mechanism
Abstract: Using observations from the Van Allen Probes EMFISIS instrument, coupled with ray tracing simulations, we determine the fraction of chorus wave power with the conditions required to access the plasmasphere and evolve into plasmaspheric hiss. It is found that only an extremely small fraction of chorus occurs with the required wave vector orientation, carrying only a small fraction of the total chorus wave power. The exception is on the edge of plasmaspheric plumes, where strong azimuthal density gradients are present. In these cases, up to 94% of chorus wave power exists with the conditions required to access the plasmasphere. As such, we conclude that strong azimuthal density gradients are actually a requirement if a significant fraction of chorus wave power is to enter the plasmasphere an. . .
Date: 02/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082111 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082111
More Details
2018
Authors: Hartley D. P., Kletzing C A, De Pascuale S., Kurth W S, and ík O.
Title: Determining Plasmaspheric Densities from Observations of Plasmaspheric Hiss
Abstract: A new method of inferring electron plasma densities inside of the plasmasphere is presented. Utilizing observations of the electric and magnetic field wave power associated with plasmaspheric hiss, coupled with the cold plasma dispersion relation, permits calculation of the plasma density. This methodology yields a density estimate for each frequency channel and time interval where plasmaspheric hiss is observed and is shown to yield results that are generally in agreement with densities determined via other methods. A statistical calibration is performed against the density from the upper hybrid line, accounting for both systematic offsets and distribution scatter in the hiss‐inferred densities. This calculation and calibration methodology provides accurate density estimates, both stati. . .
Date: 08/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025658 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025658
More Details
Authors: Engebretson M. J., Posch J. L., Braun D. J., Li W, Ma Q, et al.
Title: EMIC wave events during the four GEM QARBM challenge intervals
Abstract: This paper presents observations of EMIC waves from multiple data sources during the four GEM challenge events in 2013 selected by the GEM “Quantitative Assessment of Radiation Belt Modeling” focus group: March 17‐18 (Stormtime Enhancement), May 31‐June 2 (Stormtime Dropout), September 19‐20 (Non‐storm Enhancement), and September 23‐25 (Non‐storm Dropout). Observations include EMIC wave data from the Van Allen Probes, GOES, and THEMIS spacecraft in the near‐equatorial magnetosphere and from several arrays of ground‐based search coil magnetometers worldwide, as well as localized ring current proton precipitation data from low‐altitude POES spacecraft. Each of these data sets provides only limited spatial coverage, but their combination shows consistent occurrence patte. . .
Date: 07/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025505 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025505
More Details
Authors: Jaynes A. N., Ali A. F., Elkington S R, Malaspina D. M., Baker D N, et al.
Title: Fast diffusion of ultra-relativistic electrons in the outer radiation belt: 17 March 2015 storm event
Abstract: Inward radial diffusion driven by ULF waves has long been known to be capable of accelerating radiation belt electrons to very high energies within the heart of the belts, but more recent work has shown that radial diffusion values can be highly event‐specific and mean values or empirical models may not capture the full significance of radial diffusion to acceleration events. Here we present an event of fast inward radial diffusion, occurring during a period following the geomagnetic storm of 17 March 2015. Ultra‐relativistic electrons up to ∼8 MeV are accelerated in the absence of intense higher‐frequency plasma waves, indicating an acceleration event in the core of the outer belt driven primarily or entirely by ULF wave‐driven diffusion. We examine this fast diffusion rate alon. . .
Date: 09/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL079786 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL079786
More Details
Authors: é M., Matsuoka A., Kumamoto A., Kasahara Y., Goldstein J, et al.
Title: Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A
Abstract: Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00–07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9–5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15% O+ ions. Probe A moved outbound from L = 2.0 to 6.2 in the afternoon sector during 04:10–07:30 UT and observed no clear enhancements in the average plasma mass. For this event, the O+ density enhancement in the inner magnetosphere (i.e., oxygen torus) does not extend over all MLT but is skewed tow. . .
Date: 10/2018 Publisher: Geophysical Research Letters Pages: 10,177 - 10,184 DOI: 10.1029/2018GL080122 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080122
More Details
Authors: Engebretson M. J., Posch J. L., Capman N. S. S., Campuzano N. G., ělik P., et al.
Title: MMS, Van Allen Probes, GOES 13, and Ground Based Magnetometer Observations of EMIC Wave Events Before, During, and After a Modest Interplanetary Shock
Abstract: The stimulation of EMIC waves by a magnetospheric compression is perhaps the closest thing to a controlled experiment that is currently possible in magnetospheric physics, in that one prominent factor that can increase wave growth acts at a well‐defined time. We present a detailed analysis of EMIC waves observed in the outer dayside magnetosphere by the four Magnetosphere Multiscale (MMS) spacecraft, Van Allen Probe A, and GOES 13, and by four very high latitude ground magnetometer stations in the western hemisphere before, during, and after a modest interplanetary shock on December 14, 2015. Analysis shows several features consistent with current theory, as well as some unexpected features. During the most intense MMS wave burst, which began ~ 1 min after the end of a brief magnetosheat. . .
Date: 09/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025984 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025984
More Details
Authors: Ripoll ‐F., Loridan V., Denton M. H., Cunningham G., Reeves G., et al.
Title: Observations and Fokker‐Planck simulations of the L‐shell, energy, and pitch‐angle structure of Earth’s electron radiation belts during quiet times
Abstract: The evolution of the radiation belts in L‐shell (L), energy (E), and equatorial pitch‐angle (α0) is analyzed during the calm 11‐day interval (March 4 –March 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker‐Planck simulations combined with consistent event‐driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)‐regions persist through 11 days of hiss wave scattering; the pitch‐angle dependent inner belt core (L~<2.2 and E<700 keV), pitch‐angle homogeneous outer belt low‐energy core (L>~5 and E~<100 keV), and a distinct pocket of electrons (L~[4.5, 5.5] and E~[0.7, 2] MeV). The pitch‐angle homogeneous outer belt is explained by the diff. . .
Date: 12/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026111 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026111
More Details
Authors: Chaston C. C., Bonnell J. W., Halford A J, Reeves G D, Baker D N, et al.
Title: Pitch Angle Scattering and Loss of Radiation Belt Electrons in Broadband Electromagnetic Waves
Abstract: A magnetic conjunction between Van Allen Probes spacecraft and the Balloon Array for Radiation‐belt Relativistic Electron Losses (BARREL) reveals the simultaneous occurrence of broadband Alfvénic fluctuations and multi‐timescale modulation of enhanced atmospheric X‐ray bremsstrahlung emission. The properties of the Alfvénic fluctuations are used to build a model for pitch angle scattering in the outer radiation belt on electron gyro‐radii scale field structures. It is shown that this scattering may lead to the transport of electrons into the loss cone over an energy range from hundreds of keV to multi‐MeV on diffusive timescales on the order of hours. This process may account for modulation of atmospheric X‐ray fluxes observed from balloons and constitute a significant loss p. . .
Date: 09/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL079527 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL079527
More Details
Authors: Zhang X.-J., Thorne R., Artemyev A., Mourenas D., Angelopoulos V, et al.
Title: Properties of intense field-aligned lower-band chorus waves: Implications for nonlinear wave-particle interactions
Abstract: Resonant interactions between electrons and chorus waves are responsible for a wide range of phenomena in near‐Earth space (e.g., diffuse aurora, acceleration of MeV electrons, etc.). Although quasi‐linear diffusion is believed to be the primary paradigm for describing such interactions, an increasing number of investigations suggest that nonlinear effects are also important in controlling the rapid dynamics of electrons. However, present models of nonlinear wave‐particle interactions, which have been successfully used to describe individual short‐term events, are not directly applicable for a statistical evaluation of nonlinear effects and the long‐term dynamics of the outer radiation belt, because they lack information on the properties of intense (nonlinearly resonating with e. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025390 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025390
More Details
Authors: Ma Q, Li W, Bortnik J, Thorne R M, Chu X., et al.
Title: Quantitative Evaluation of Radial Diffusion and Local Acceleration Processes During GEM Challenge Events
Abstract: We simulate the radiation belt electron flux enhancements during selected Geospace Environment Modeling (GEM) challenge events to quantitatively compare the major processes involved in relativistic electron acceleration under different conditions. Van Allen Probes observed significant electron flux enhancement during both the storm time of 17–18 March 2013 and non–storm time of 19–20 September 2013, but the distributions of plasma waves and energetic electrons for the two events were dramatically different. During 17–18 March 2013, the SYM‐H minimum reached −130 nT, intense chorus waves (peak Bw ~140 pT) occurred at 3.5 < L < 5.5, and several hundred keV to several MeV electron fluxes increased by ~2 orders of magnitude mostly at 3.5 < L < 5.5. During 19–20 September 2013, th. . .
Date: 03/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA025114 Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JA025114
More Details
Authors: Mitani K., Seki K., Keika K, Gkioulidou M., Lanzerotti L J, et al.
Title: Radial Transport of Higher-Energy Oxygen Ions Into the Deep Inner Magnetosphere Observed by Van Allen Probes
Abstract: The transport mechanism of the ring current ions differs among ion energies. Lower‐energy (≲150 keV) ions are well known to be transported convectively. Higher‐energy (≳150 keV) protons are reported to be transported diffusively, while there are few reports about transport of higher‐energy oxygen ions. We report the radial transport of higher‐energy oxygen ions into the deep inner magnetosphere during the late main phase of the magnetic storm on 23–25 April 2013 observed by the Van Allen Probes spacecraft. An enhancement of 1–100 mHz magnetic fluctuations is simultaneously observed. Observations of 3 and 30 mHz geomagnetic pulsations indicate the azimuthal mode number is ≤10. The fluctuations can resonate with the drift and bounce motions of the oxygen ions. The results s. . .
Date: 05/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077500 Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL077500
More Details
Authors: Kurita S., Miyoshi Y, Shiokawa K., Higashio N., Mitani T., et al.
Title: Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations
Abstract: There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground‐based network observations. Arase observed a signature of MeV electron loss by EMIC waves, and the satellite and ground‐based observations constrained spatial‐temporal variations of the EMIC wave activity during the loss event. Multi‐satellite observation of MeV electron fluxes showed that ~2.5 MeV electron fluxes substantia. . .
Date: 11/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL080262 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080262
More Details
Authors: Motoba T., Ohtani S, Gkioulidou M., Ukhorskiy A., Mitchell D G, et al.
Title: Response of Different Ion Species to Local Magnetic Dipolarization Inside Geosynchronous Orbit
Abstract: This paper examines how hydrogen, helium and oxygen (H, He and O) ion fluxes at 1–1000 keV typically respond to local magnetic dipolarization inside geosynchronous orbit (GEO). We extracted 144 dipolarizations which occurred at magnetic inclination > 30° from the 2012–2016 tail seasons' observations of the Van Allen Probes spacecraft and then defined typical flux changes of these ion species by performing a superposed epoch analysis. On average, the dipolarization inside GEO is accompanied by a precursory transient decrease in the northward magnetic field component, transient impulsive enhancement in the westward electric field component, and decrease (increase) in the proton density (temperature). The coincident ion species experience an energy‐dependent flux change, consisting of . . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025557 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025557
More Details
Authors: De Pascuale S., Jordanova V K, Goldstein J, Kletzing C A, Kurth W S, et al.
Title: Simulations of Van Allen Probes Plasmaspheric Electron Density Observations
Abstract: We simulate equatorial plasmaspheric electron densities using a physics‐based model (Cold PLasma, CPL; used in the ring current‐atmosphere interactions model) of the source and loss processes of refilling and erosion driven by empirical inputs. The performance of CPL is evaluated against in situ measurements by the Van Allen Probes (Radiation Belt Storm Probes) for two events: the 31 May to 5 June and 15 to 20 January 2013 geomagnetic storms observed in the premidnight and postmidnight magnetic local time (MLT) sectors, respectively. Overall, CPL reproduces the radial extent of the plasmasphere to within a mean absolute difference of urn:x-wiley:jgra:media:jgra54637:jgra54637-math-0001 L. The model electric field responsible for E × B convection and the parameterization of geomagn. . .
Date: 11/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025776 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025776
More Details
Authors: Hartley D. P., Kletzing C A, ík O., Chen L, and Horne R B
Title: Statistical Properties of Plasmaspheric Hiss from Van Allen Probes Observations
Abstract: Van Allen Probes observations are used to statistically investigate plasmaspheric hiss wave properties. This analysis shows that the wave normal direction of plasmaspheric hiss is predominantly field aligned at larger L shells, with a bimodal distribution, consisting of a near-field aligned and a highly oblique component, becoming apparent at lower L shells. Investigation of this oblique population reveals that it is most prevalent at L < 3, frequencies with f/fce> 0.01 (or f> 700 Hz), low geomagnetic activity levels, and between 1900 and 0900 MLT. This structure is similar to that reported for oblique chorus waves in the equatorial region, perhaps suggesting a causal link between the two wave modes. Ray tracing results from HOTRAY confirm that is feasible for these oblique chorus waves to. . .
Date: 02/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024593 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024593/full
More Details
Authors: Capannolo L., Li W, Ma Q, Zhang X.-J., Redmon R. J., et al.
Title: Understanding the Driver of Energetic Electron Precipitation Using Coordinated Multisatellite Measurements
Abstract: Magnetospheric plasma waves play a significant role in ring current and radiation belt dynamics, leading to pitch angle scattering loss and/or stochastic acceleration of the particles. During a non‐storm time dropout event on 24 September 2013, intense electromagnetic ion cyclotron (EMIC) waves were detected by Van Allen Probe A (Radiation Belt Storm Probes‐A). We quantitatively analyze a conjunction event when Van Allen Probe A was located approximately along the same magnetic field line as MetOp‐01, which detected simultaneous precipitation of >30 keV protons and energetic electrons over an unexpectedly broad energy range (>~30 keV). Multipoint observations together with quasi‐linear theory provide direct evidence that the observed electron precipitation at higher energy (>~700 k. . .
Date: 07/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL078604 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL078604
More Details
Authors: Oimatsu S., é M., Takahashi K., Yamamoto K., Keika K, et al.
Title: Van Allen Probes observations of drift-bounce resonance and energy transfer between energetic ring current protons and poloidal Pc4 wave
Abstract: A poloidal Pc4 wave and proton flux oscillations are observed in the inner magnetosphere on the dayside near the magnetic equator by the Van Allen Probes spacecraft on 2 March 2014. The flux oscillations are observed in the energy range of 67.0 keV to 268.8 keV with the same frequency of the poloidal Pc4 wave. We find pitch angle and energy dispersion in the phase difference between the poloidal magnetic field and the proton flux oscillations, which are features of drift‐bounce resonance. We estimate the resonance energy to be ~120 keV for pitch angle (α) of 30° or 150°, and 170–180 keV for α = 50° or 130°. To examine the direction of energy flow between protons and the wave, we calculate the sign of the gradient of proton phase space density (df/dW) on both the inbound and outbo. . .
Date: 04/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA025087 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2017JA025087
More Details
2017
Authors: Ma Q, Li W, Thorne R M, Bortnik J, Reeves G D, et al.
Title: Diffusive transport of several hundred keV electrons in the Earth's slot region
Abstract: We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L~2.7 to L~2.4, and the flux levels decreased by a factor of ~2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a 3-dimentional diffusion code, which reproduced the energy-dependent transport of electrons from ~100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the . . .
Date: 09/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024452 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024452/full
More Details
Authors: Ripoll J.-F., Santol?k O., Reeves G., Kurth W S, Denton M., et al.
Title: Effects of whistler mode hiss waves in March 2013
Abstract: We present simulations of the loss of radiation belt electrons by resonant pitch angle diffusion caused by whistler mode hiss waves for March 2013. Pitch angle diffusion coefficients are computed from the wave properties and the ambient plasma data obtained by the Van Allen Probes with a resolution of 8 hours and 0.1 L-shell. Loss rates follow a complex dynamic structure, imposed by the wave and plasma properties. Hiss effects can be strong, with minimum lifetimes (of ~1 day) moving from energies of ~100 keV at L~5 up to ~2 MeV at L~2, and stop abruptly, similarly to the observed energy-dependent inner belt edge. Periods when the plasmasphere extends beyond L~5 favor long-lasting hiss losses from the outer belt. Such loss rates are embedded in a reduced Fokker-Planck code and validated aga. . .
Date: 06/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024139 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024139/full
More Details
Authors: Turner D. L., Lee J. H., Claudepierre S G, Fennell J. F., Blake J B, et al.
Title: Examining coherency scales, substructure, and propagation of whistler-mode chorus elements with Magnetospheric Multiscale (MMS)
Abstract: Whistler-mode chorus waves are a naturally occurring electromagnetic emission observed in Earth's magnetosphere. Here, for the first time, data from NASA's Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA's Van Allen Probes mission on 07 April 2016. Chorus wave activity was simultaneously observed by all six spacecraft over a broad range of L-shells (5.5 < L < 8.5), magnetic local time (06:00 < MLT < 09:00), and magnetic latitude (-32° < MLat < -15°), implying a large chorus active region. Eight chorus elements and their substructure were analyzed in detail with . . .
Date: 10/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024474 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024474/full
More Details
Authors: Hartley D. P., Kletzing C A, Kurth W S, Hospodarsky G B, Bounds S R, et al.
Title: An improved sheath impedance model for the Van Allen probes EFW instrument: Effects of the spin axis antenna
Abstract: A technique to quantitatively determine the sheath impedance of the Van Allen Probes Electric Field and Waves (EFW) instrument is presented. This is achieved, for whistler mode waves, through a comparison between the total electric field wave power spectra calculated from magnetic field observations and cold plasma theory, and the total electric field wave power measured by the EFW spherical double probes instrument. In a previous study, a simple density-dependent sheath impedance model was developed in order to account for the differences between the observed and calculated wave electric field. The current study builds on this previous work by investigating the remaining discrepancies, identifying their cause, and developing an improved sheath impedance correction. Analysis reveals that a. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023597 Available at: http://doi.wiley.com/10.1002/2016JA023597
More Details
Authors: Ren Jie, Zong Q. G., Miyoshi Y, Zhou X. Z., Wang Y. F., et al.
Title: Low-energy (< 200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation
Abstract: We report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions that plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations su. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024316 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024316/full
More Details
Authors: Turner D. L., Fennell J. F., Blake J B, Claudepierre S G, Clemmons J. H., et al.
Title: Multipoint observations of energetic particle injections and substorm activity during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes
Abstract: This study examines multipoint observations during a conjunction between MMS and Van Allen Probes on 07 April 2016 in which a series of energetic particle injections occurred. With complementary data from THEMIS, Geotail, and LANL-GEO (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (max. AE < 300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex series of at least six different electron injections was observed throughout the system. Intriguingly, only one corresponding ion injection was clearly observed. All ion and electron injections were observed at < 600 keV only. MMS reveals detailed substructure within the lar. . .
Date: 09/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024554 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024554/full
More Details
Authors: Chu X., Bortnik J, Li W, Ma Q, Denton R., et al.
Title: A neural network model of three-dimensional dynamic electron density in the inner magnetosphere
Abstract: A plasma density model of the inner magnetosphere is important for a variety of applications including the study of wave-particle interactions, and wave excitation and propagation. Previous empirical models have been developed under many limiting assumptions and do not resolve short-term variations, which are especially important during storms. We present a three-dimensional dynamic electron density (DEN3D) model developed using a feedforward neural network with electron densities obtained from four satellite missions. The DEN3D model takes spacecraft location and time series of solar and geomagnetic indices (F10.7, SYM-H, and AL) as inputs. It can reproduce the observed density with a correlation coefficient of 0.95 and predict test data set with error less than a factor of 2. Its predict. . .
Date: 09/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024464 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024464/full
More Details
Authors: Breneman A. W., Crew A., Sample J., Klumpar D., Johnson A., et al.
Title: Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II
Abstract: We present observations that provide the strongest evidence yet that discrete whistler mode chorus packets cause relativistic electron microbursts. On 20 January 2016 near 1944 UT the low Earth orbiting CubeSat Focused Investigations of Relativistic Electron Bursts: Intensity, Range, and Dynamics (FIREBIRD II) observed energetic microbursts (near L = 5.6 and MLT = 10.5) from its lower limit of 220 keV, to 1 MeV. In the outer radiation belt and magnetically conjugate, Van Allen Probe A observed rising‐tone, lower band chorus waves with durations and cadences similar to the microbursts. No other waves were observed. This is the first time that chorus and microbursts have been simultaneously observed with a separation smaller than a chorus packet. A majority of the microbursts do not have t. . .
Date: 11/2017 Publisher: Geophysical Research Letters Pages: 11,265 - 11,272 DOI: 10.1002/2017GL075001 Available at: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL075001
More Details
Authors: Woodroffe J. R., Jordanova V K, Funsten H O, Streltsov A. V., Bengtson M. T., et al.
Title: Van Allen Probes observations of structured whistler mode activity and coincident electron Landau acceleration inside a remnant plasmaspheric plume
Abstract: We present observations from the Van Allen Probes spacecraft that identify a region of intense whistler mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became nonlinearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the plume were subject to Landau acceleration by these waves, an effect that is naturally explained by whistler emission within a gradient and high-density ducting inside a density enhancement.
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022219 Available at: http://doi.wiley.com/10.1002/2015JA022219
More Details
Authors: Ma Q, Artemyev A. V., Mourenas D., Li W, Thorne R M, et al.
Title: Very Oblique Whistler Mode Propagation in the Radiation Belts: Effects of Hot Plasma and Landau Damping
Abstract: Satellite observations of a significant population of very oblique chorus waves in the outer radiation belt have fueled considerable interest in the effects of these waves on energetic electron scattering and acceleration. However, corresponding diffusion rates are extremely sensitive to the refractive index N, controlled by hot plasma effects including Landau damping and wave dispersion modifications by suprathermal (15–100 eV) electrons. A combined investigation of wave and electron distribution characteristics obtained from the Van Allen Probes shows that peculiarities of the measured electron distribution significantly reduce Landau damping, allowing wave propagation with high N ∼ 100–200. Further comparing measured refractive indexes with theoretical estimates incorporating hot . . .
Date: 12/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL075892 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL075892/full
More Details
2016
Authors: Ma Q, Li W, Thorne R M, Bortnik J, Reeves G D, et al.
Title: Characteristic energy range of electron scattering due to plasmaspheric hiss
Abstract: We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth's inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth's outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to the first adiabatic invariant μ = 4–200 MeV/G. The electron diffusion coefficients due to hiss scattering are calculated at L = 2–6, and the modeled energy band of effective pitch angle scattering is also well correlated with the constant μ lines and is consistent with the observed e. . .
Date: 11/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023311 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023311/full
More Details
Authors: Denton M. H., Reeves G. E., Thomsen M F, Henderson M G, Friedel R H W, et al.
Title: The complex nature of storm-time ion dynamics: Transport and local acceleration
Abstract: Data from the Van Allen Probes Helium, Oxygen, Proton, Electron (HOPE) spectrometers reveal hitherto unresolved spatial structure and dynamics in ion populations. Complex regions of O+ dominance, at energies from a few eV to >10 keV, are observed throughout the magnetosphere. Isolated regions on the dayside that are rich in energetic O+ might easily be interpreted as strong energization of ionospheric plasma. We demonstrate, however, that both the energy spectrum and the limited MLT extent of these features can be explained by energy-dependent drift of particles injected on the night side 24 hours earlier. Particle tracing simulations show that the energetic O+ can originate in the magnetotail, not in the ionosphere. Enhanced wave activity is co-located with the heavy-ion rich plasma a. . .
Date: 09/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL070878 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2016GL070878/abstract
More Details
Authors: Liu H., Zong Q.-G., Zhou X.-Z., Fu S. Y., Rankin R, et al.
Title: Compressional ULF wave modulation of energetic particles in the inner magnetosphere
Abstract: We present Van Allen Probes observations of modulations in the flux of very energetic electrons up to a few MeV and protons between 1200 − 1400 UT on February 19th, 2014. During this event the spacecraft were in the dayside magnetosphere at L⋆≈5.5. The modulations extended across a wide range of particle energies, from 79.80 keV to 2.85 MeV for electrons and from 82.85 keV to 636.18 keV for protons. The fluxes of π/2 pitch angle particles were observed to attain maximum values simultaneously with the ULF compressional magnetic field component reaching a minimum. We use peak-to-valley ratios to quantify the strength of the modulation effect, finding that the modulation is larger at higher energies than at lower energies. It is shown that the compressional wave modulation of the parti. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022706 Available at: http://doi.wiley.com/10.1002/2016JA022706
More Details
Authors: Zhang X.-J., Li W, Ma Q, Thorne R M, Angelopoulos V, et al.
Title: Direct evidence for EMIC wave scattering of relativistic electrons in space
Abstract: Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes. EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the. . .
Date: 07/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022521 Available at: http://doi.wiley.com/10.1002/2016JA022521
More Details
Authors: Paulson K. W., Smith C W, Lessard M. R., Torbert R B, Kletzing C A, et al.
Title: In situ statistical observations of Pc1 pearl pulsations and unstructured EMIC waves by the Van Allen Probes
Abstract: We present here the first in situ statistical survey of structured Pc1 pearl pulsations compared with unstructured electromagnetic ion cyclotron (EMIC) waves observed by the Van Allen Probes spacecraft. This data set was compiled from observations spanning 8 September 2012 through 31 August 2015 and comprises over 1630 h of total EMIC wave activity, of which 291 h exhibited pearl structure. Additionally, we have identified 29 wave events demonstrating periodically oscillating wave packets, mostly about the magnetic equator, indicated by the reversal of Poynting flux along the background magnetic field. We have found several stark differences between Pc1 pearl pulsations and unstructured EMIC waves. While unstructured EMIC waves demonstrate the predicted behavior of a higher occurrence acro. . .
Date: 12/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023160 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023160/full
More Details
Authors: Li W, Santolik O, Bortnik J, Thorne R M, Kletzing C A, et al.
Title: New Chorus Wave Properties Near the Equator from Van Allen Probes Wave Observations
Abstract: The chorus wave properties are evaluated using Van Allen Probes data in the Earth's equatorial magnetosphere. Two distinct modes of lower band chorus are identified: a quasi-parallel mode and a quasi-electrostatic mode, whose wave normal direction is close to the resonance cone. Statistical results indicate that the quasi-electrostatic (quasi-parallel) mode preferentially occurs during relatively quiet (disturbed) geomagnetic activity at lower (higher) L shells. Although the magnetic intensity of the quasi-electrostatic mode is considerably weaker than the quasi-parallel mode, their electric intensities are comparable. A newly identified feature of the quasi-electrostatic mode is that its frequency peaks at higher values compared to the quasi-parallel mode that exhibits a broad frequency s. . .
Date: 05/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL068780 Available at: http://doi.wiley.com/10.1002/2016GL068780
More Details
Authors: Matsui H., Paulson K. W., Torbert R B, Spence H E, Kletzing C A, et al.
Title: Nonlinearity in chorus waves during a geomagnetic storm on 1 November 2012
Abstract: In this study, we investigate the possibility of nonlinearity in chorus waves during a geomagnetic storm on 1 November 2012. The data we use were measured by the Van Allen Probe B. Wave data and plasma sheet electron data are analyzed. Chorus waves were frequently measured in the morning side during the main phase of this storm. Large-amplitude chorus waves were seen of the order of ∼0.6 nT and >7 mV/m, which are similar to or larger than the typical ULF waves. The waves quite often consist of rising tones during the burst sampling. Since the rising tone is known as a signature of nonlinearity, a large portion of the waves are regarded as nonlinear at least during the burst sampling periods. These results underline the importance of nonlinearity in the dynamics of chorus waves. We furthe. . .
Date: 01/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021772 Available at: http://doi.wiley.com/10.1002/2015JA021772
More Details
Authors: Zhang X.-J., Li W, Thorne R M, Angelopoulos V, Ma Q, et al.
Title: Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event
Abstract: Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed by Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, t. . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022517 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022517/abstract
More Details
Authors: Kanekal S G, Baker D N, Fennell J. F., Jones A., Schiller Q., et al.
Title: Prompt acceleration of magnetospheric electrons to ultrarelativistic energies by the 17 March 2015 interplanetary shock
Abstract: Trapped electrons in Earth's outer Van Allen radiation belt are influenced profoundly by solar phenomena such as high-speed solar wind streams, coronal mass ejections (CME), and interplanetary (IP) shocks. In particular, strong IP shocks compress the magnetosphere suddenly and result in rapid energization of electrons within minutes. It is believed that the electric fields induced by the rapid change in the geomagnetic field are responsible for the energization. During the latter part of March 2015, a CME impact led to the most powerful geomagnetic storm (minimum Dst = −223 nT at 17 March, 23 UT) observed not only during the Van Allen Probe era but also the entire preceding decade. Magnetospheric response in the outer radiation belt eventually resulted in elevated levels of energized ele. . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 7622 - 7635 DOI: 10.1002/2016JA022596 Available at: http://doi.wiley.com/10.1002/2016JA022596
More Details
Authors: Li W, Ma Q, Thorne R M, Bortnik J, Zhang X.-J., et al.
Title: Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations
Abstract: Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak loca. . .
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 5520 - 5536 DOI: 10.1002/jgra.v121.610.1002/2016JA022400 Available at: http://doi.wiley.com/10.1002/2016JA022400
More Details
Authors: Jordanova V K, Tu W., Chen Y., Morley S. K., Panaitescu A.-D., et al.
Title: RAM-SCB simulations of electron transport and plasma wave scattering during the October 2012 “double-dip” storm
Abstract: Mechanisms for electron injection, trapping, and loss in the near-Earth space environment are investigated during the October 2012 “double-dip” storm using our ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB). Pitch angle and energy scattering are included for the first time in RAM-SCB using L and magnetic local time (MLT)-dependent event-specific chorus wave models inferred from NOAA Polar-orbiting Operational Environmental Satellites (POES) and Van Allen Probes Electric and Magnetic Field Instrument Suite and Integrated Science observations. The dynamics of the source (approximately tens of keV) and seed (approximately hundreds of keV) populations of the radiation belts simulated with RAM-SCB is compared with Van Allen Probes Magnetic Electron . . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022470 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022470/abstract
More Details
Authors: Goldstein J, Baker D N, Blake J B, De Pascuale S., Funsten H O, et al.
Title: The relationship between the plasmapause and outer belt electrons
Abstract: We quantify the spatial relationship between the plasmapause and outer belt electrons for a 5 day period, 15–20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8–7.7 MeV relativistic electron flux data. A plasmapause gradient finder is applied to wave-derived electron number densities >10 cm−3. We identify two outer belts. Outer belt 1 is a stable zone of >3 MeV electrons located 1–2 RE inside the plasmapause. Outer belt 2 is a dynamic zone of <3 MeV electrons within 0.5 RE of the moving plasmapause. Electron fluxes earthward of each belt's peak are anticorrelated with cold plasma density. Belt 1 decayed on hiss timescales prior to a disturbance on 17 January and suffered only a modest dropout, pe. . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023046 Available at: http://doi.wiley.com/10.1002/2016JA023046
More Details
Authors: Ripoll J. F., Reeves G., Cunningham G., Loridan V., Denton M., et al.
Title: Reproducing the observed energy-dependent structure of Earth's electron radiation belts during storm recovery with an event-specific diffusion model
Abstract: We present dynamic simulations of energy-dependent losses in the radiation belt " slot region" and the formation of the two-belt structure for the quiet days after the March 1st storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally-resolved whistler mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L-shells (2 to 6) including (a) the strong energy-dependence to the radiation belt dynamics (b) an energy-dependent outer boundary to the inner zone that extends to higher L-shells at lower energies and (c) an " S-shaped" energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial tran. . .
Date: 05/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL068869 Available at: http://doi.wiley.com/10.1002/2016GL068869
More Details
Authors: Ma Q, Li W, Thorne R M, Nishimura Y., Zhang X.-J., et al.
Title: Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt
Abstract: The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth's radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusive movement in differential energy fluxes, and the radial extent to which electrons can penetra. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022507 Available at: http://doi.wiley.com/10.1002/2016JA022507
More Details
Authors: Zhang X.-J., Li W, Thorne R M, Angelopoulos V, Bortnik J, et al.
Title: Statistical distribution of EMIC wave spectra: Observations from Van Allen Probes
Abstract: It has been known that electromagnetic ion cyclotron (EMIC) waves can precipitate ultrarelativistic electrons through cyclotron resonant scattering. However, the overall effectiveness of this mechanism has yet to be quantified, because it is difficult to obtain the global distribution of EMIC waves that usually exhibit limited spatial presence. We construct a statistical distribution of EMIC wave frequency spectra and their intensities based on Van Allen Probes measurements from September 2012 to December 2015. Our results show that as the ratio of plasma frequency over electron gyrofrequency increases, EMIC wave power becomes progressively dominated by the helium band. There is a pronounced dawn-dusk asymmetry in the wave amplitude and the frequency spectrum. The frequency spectrum does n. . .
Date: 12/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071158 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071158/full
More Details
Authors: Li W, Mourenas D., Artemyev A. V., Bortnik J, Thorne R M, et al.
Title: Unraveling the excitation mechanisms of highly oblique lower band chorus waves
Abstract: Excitation mechanisms of highly oblique, quasi-electrostatic lower band chorus waves are investigated using Van Allen Probes observations near the equator of the Earth's magnetosphere. Linear growth rates are evaluated based on in situ, measured electron velocity distributions and plasma conditions and compared with simultaneously observed wave frequency spectra and wave normal angles. Accordingly, two distinct excitation mechanisms of highly oblique lower band chorus have been clearly identified for the first time. The first mechanism relies on cyclotron resonance with electrons possessing both a realistic temperature anisotropy at keV energies and a plateau at 100–500 eV in the parallel velocity distribution. The second mechanism corresponds to Landau resonance with a 100–500 eV . . .
Date: 09/2016 Publisher: Geophysical Research Letters Pages: 8867 - 8875 DOI: 10.1002/grl.v43.1710.1002/2016GL070386 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL070386/abstract
More Details
Authors: Hartley D. P., Kletzing C A, Kurth W S, Bounds S R, Averkamp T. F., et al.
Title: Using the cold plasma dispersion relation and whistler-mode waves to quantify the antenna sheath impedance of the Van Allen Probes EFW instrument
Abstract: Cold plasma theory and parallel wave propagation are often assumed when approximating the whistler mode magnetic field wave power from electric field observations. The current study is the first to include the wave normal angle from the Electric and Magnetic Field Instrument Suite and Integrated Science package on board the Van Allen Probes in the conversion factor, thus allowing for the accuracy of these assumptions to be quantified. Results indicate that removing the assumption of parallel propagation does not significantly affect calculated plasmaspheric hiss wave powers. Hence, the assumption of parallel propagation is valid. For chorus waves, inclusion of the wave normal angle in the conversion factor leads to significant alterations in the distribution of wave power ratios (observed/. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022501 Available at: http://doi.wiley.com/10.1002/2016JA022501
More Details
Authors: é M., Keika K, Kletzing C A, Spence H E, Smith C W, et al.
Title: Van Allen Probes observations of magnetic field dipolarization and its associated O + flux variations in the inner magnetosphere at L  < 6.6
Abstract: We investigate magnetic field dipolarization in the inner magnetosphere and its associated ion flux variations, using the magnetic field and energetic ion flux data acquired by the Van Allen Probes. From a study of 74 events that appeared at L = 4.5–6.6 between 1 October 2012 and 31 October 2013, we reveal the following characteristics of the dipolarization in the inner magnetosphere: (1) its timescale is approximately 5 min, (2) it is accompanied by strong magnetic fluctuations that have a dominant frequency close to the O+ gyrofrequency, (3) ion fluxes at 20–50 keV are simultaneously enhanced with larger magnitudes for O+ than for H+, (4) after a few minutes of the dipolarization, the flux enhancement at 0.1–5 keV appears with a clear energy-dispersion signature only for . . .
Date: 07/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022549 Available at: http://doi.wiley.com/10.1002/2016JA022549
More Details
Authors: Foster J. C., Erickson P. J., Omura Y., Baker D N, Kletzing C A, et al.
Title: Van Allen Probes Observations of Prompt MeV Radiation Belt Electron Acceleration in Non-Linear Interactions with VLF Chorus
Abstract: Prompt recovery of MeV electron populations in the post-storm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly non-linear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant non-adiabatic energy exchange. Through detailed examination of VLF chorus and electron fluxes observed by Van Allen Probes, we investigate the efficiency of non-linear processes for acceleration of electrons to MeV energies. We find through subpacket analysis of chorus waveforms that electrons with initial energy 100s keV - 3 MeV can be accelerated by 50 keV - 200 keV in re. . .
Date: 12/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023429 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023429/full
More Details
Authors: Sigsbee K., Kletzing C A, Smith C W, MacDowall Robert, Spence Harlan, et al.
Title: Van Allen Probes, THEMIS, GOES, and Cluster Observations of EMIC waves, ULF pulsations, and an electron flux dropout
Abstract: We examined an electron flux dropout during the 12–14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, THEMIS-A (P5), Cluster 2, and Geostationary Operational Environmental Satellite (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 hours from 12–14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12–13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ EMIC wa. . .
Date: 01/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020877 Available at: http://doi.wiley.com/10.1002/2014JA020877
More Details
2015
Authors: de Soria-Santacruz M., Li W, Thorne R M, Ma Q, Bortnik J, et al.
Title: Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Validation with conjunctive Van Allen Probes observations
Abstract: Plasmaspheric hiss plays an important role in controlling the overall structure and dynamics of the Earth's radiation belts. The interaction of plasmaspheric hiss with radiation belt electrons is commonly evaluated using diffusion codes, which rely on statistical models of wave observations that may not accurately reproduce the instantaneous global wave distribution, or the limited in-situ satellite wave measurements from satellites. This paper evaluates the performance and limitations of a novel technique capable of inferring wave amplitudes from low-altitude electron flux observations from the POES spacecraft, which provide extensive coverage in L-shell and MLT. We found that, within its limitations, this technique could potentially be used to build a dynamic global model of the plasmasp. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021148 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2015JA021148/abstract
More Details

Pages