Biblio

Found 3 results
Filters: Author is Fernandes, P. A.  [Clear All Filters]
2017
Authors: Denton M. H., Thomsen M F, Reeves G D, Larsen B A, Henderson M G, et al.
Title: The Evolution of the Plasma Sheet Ion Composition: Storms and Recoveries
Abstract: The ion plasma sheet (~few hundred eV to ~few 10s keV) is usually dominated by H+ ions. Here, changes in ion composition within the plasma sheet are explored both during individual events, and statistically during 54 calm-to-storm events and during 21 active-to-calm events. Ion composition data from the HOPE (Helium, Oxygen, Proton, Electron) instruments onboard Van Allen Probes satellites provide exceptional spatial and temporal resolution of the H+, O+, and He+ ion fluxes in the plasma sheet. H+ shown to be the dominant ion in the plasma sheet in the calm-to-storm transition. However, the energy-flux of each ion changes in a quasi-linear manner during extended calm intervals. Heavy ions (O+ and He+) become increasingly important during such periods as charge-exchange reactions result in . . .
Date: 10/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024475 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024475/full
More Details
Authors: Denton M. H., Reeves G D, Larsen B A, Friedel R. F. W., Thomsen M F, et al.
Title: On the origin of low-energy electrons in the inner magnetosphere: Fluxes and pitch-angle distributions
Abstract: Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected previously. This study concerns observations of low-energy electrons made by the Helium Oxygen Proton Electron instrument on board the Van Allen Probes satellites and also observations from geosynchronous orbit made by the Magnetospheric Plasma Analyzer on board Los Alam. . .
Date: 02/2017 Publisher: Journal of Geophysical Research: Space Physics Pages: 1789–1802 DOI: 10.1002/2016JA023648 Available at: onlinelibrary.wiley.com/doi/10.1002/2016JA023648/full
More Details
Authors: Jahn J -M, Goldstein J, Reeves G D, Fernandes P. A., Skoug R M, et al.
Title: The Warm Plasma Composition in the Inner Magnetosphere during 2012-2015
Abstract: Ionospheric heavy ions play an important role in the dynamics of Earth's magnetosphere. The greater mass and gyro radius of ionospheric oxygen differentiates its behavior from protons at the same energies. Oxygen may have an impact on tail reconnection processes, and it can at least temporarily dominate the energy content of the ring current during geomagnetic storms. At sub-keV energies, multi-species ion populations in the inner magnetosphere form the warm plasma cloak, occupying the energy range between the plasmasphere and the ring current. Lastly, cold lighter ions from the mid-latitude ionosphere create the co-rotating plasmasphere whose outer regions can interact with the plasma cloak, plasma sheet, ring current, and outer electron belt. In this paper we present a statistical view o. . .
Date: 09/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024183 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024183/full
More Details