Found 2 results
Filters: Author is Ergun, Robert  [Clear All Filters]
Authors: Cattell C., Breneman A., Colpitts C., Dombeck J., Thaller S., et al.
Title: Dayside response of the magnetosphere to a small shock compression: Van Allen Probes, Magnetospheric MultiScale, and GOES-13
Abstract: Observations from Magnetospheric MultiScale (~8 Re) and Van Allen Probes (~5 and 4 Re) show that the initial dayside response to a small interplanetary shock is a double-peaked dawnward electric field, which is distinctly different from the usual bipolar (dawnward and then duskward) signature reported for large shocks. The associated ExB flow is radially inward. The shock compressed the magnetopause to inside 8 Re, as observed by MMS, with a speed that is comparable to the ExB flow. The magnetopause speed and the ExB speeds were significantly less than the propagation speed of the pulse from MMS to the Van Allen Probes and GOES-13, which is consistent with the MHD fast mode. There were increased fluxes of energetic electrons up to several MeV. Signatures of drift echoes and response to ULF. . .
Date: 08/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074895 Available at:
More Details
Authors: Sarris Theodore E., Li Xinlin, Temerin Michael, Zhao Hong, Califf Sam, et al.
Title: On the Relationship Between Electron Flux Oscillations and ULF Wave-Driven Radial Transport
Abstract: The objective of this study is to investigate the relationship between the levels of electron flux oscillations and radial diffusion for different Phase Space Density (PSD) gradients, through observation and particle tracing simulations under the effect of model Ultra Low Frequency (ULF) fluctuations. This investigation aims to demonstrate that electron flux oscillation is associated with and could be used as an indicator of ongoing radial diffusion. To this direction, flux oscillations are observed through the Van Allen Probes’ MagEIS energetic particle detector; subsequently, flux oscillations are produced in a particle tracing model that simulates radial diffusion by using model magnetic and electric field fluctuations that are approximating measured magnetic and electric field fluctu. . .
Date: 06/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023741 Available at:
More Details