Found 2 results
Filters: Author is Zhou, X. Z.  [Clear All Filters]
Journal Article
Authors: Ren Jie, Zong Q. G., Zhou X. Z., Spence H E, Funsten H O, et al.
Title: Cold Plasmaspheric Electrons Affected by ULF Waves in the Inner Magnetosphere: A Van Allen Probes Statistical Study
Abstract: Six years of Van Allen Probes data are used to investigate cold plasmaspheric electrons affected by ultralow‐frequency (ULF) waves in the inner magnetosphere (L<7) including spatial distributions, occurrence conditions, and resonant energy range. Events exhibit a global distribution within L= 4–7 but preferentially occur at L∼5.5–7 in the dayside, while there is higher occurrence rate in the duskside than dawnside. They can occur under different geomagnetic activities and solar wind velocities (VS), but the occurrence rates are increasing with larger AE, |SYMH|, and VS. These features are closely associated with the generation and propagation of ULF waves in Pc4 (45–150 s) and Pc5 (150–600 s) bands. Combined with electron observations from HOPE instrument, the resonant energies. . .
Date: 10/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 7954 - 7965 DOI: 10.1029/2019JA027009 Available at:
More Details
Authors: Ren Jie, Zong Q. G., Miyoshi Y, Zhou X. Z., Wang Y. F., et al.
Title: Low-energy (< 200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation
Abstract: We report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions that plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations su. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024316 Available at:
More Details