Found 2 results
Filters: Author is Boardsen, Scott A.  [Clear All Filters]
Authors: Boardsen Scott A., Hospodarsky George B., Min Kyungguk, Averkamp Terrance F., Bounds Scott R., et al.
Title: Determining the wave vector direction of equatorial fast magnetosonic waves
Abstract: We perform polarization analysis of the equatorial fast magnetosonic waves electric field over a 20 minute interval of Van Allen Probes A Waveform Receiver burst mode data. The wave power peaks at harmonics of the proton cyclotron frequency indicating the spacecraft is near or in the source region. The wave vector is inferred from the direction of the major axis of the electric field polarization ellipsoid and the sign of the phase between the longitudinal electric and compressional magnetic field components. We show that wave vector is preferentially in the azimuthal direction as opposed to the radial direction. From Poynting flux analysis one would infer that the wave vector is primarily in the radial direction. We show that the error in the Poynting flux is large ~ 90°. These results s. . .
Date: 07/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL078695 Available at:
More Details
Authors: Min Kyungguk, Boardsen Scott A., Denton Richard E, and Liu Kaijun
Title: Equatorial Evolution of the Fast Magnetosonic Mode in the Source Region: Observation-Simulation Comparison of the Preferential Propagation Direction
Abstract: Recent analysis of an event observed by the Van Allen Probes in the source region outside the plasmapause has shown that fast magnetosonic waves (also referred to as equatorial noise) propagate preferentially in the azimuthal direction, implying that wave amplification should occur during azimuthal propagation. To demonstrate this, we carry out 2‐D particle‐in‐cell simulations of the fast magnetosonic mode at the dipole magnetic equator with the simulation box size, the magnetic field inhomogeneity, and the plasma parameters chosen from the same event recently analyzed. The self‐consistently evolving electric and magnetic field fluctuations are characterized by spectral peaks at harmonics of the local proton cyclotron frequency. The azimuthal component of the electric field fluctua. . .
Date: 11/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026037 Available at:
More Details