Found 2 results
Filters: Author is Hartinger, M. D.  [Clear All Filters]
Authors: Hartinger M. D., Claudepierre S G, Turner D. L., Reeves G D, Breneman A., et al.
Title: Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels
Abstract: Electron flux measurements are an important diagnostic for interactions between ultralow‐frequency (ULF) waves and relativistic (∼1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh‐resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission—obtained using a data product that improves the energy resolution by roughly an order of magnitude—are crucial for understanding ULF wave‐particle interactions. In particular, the ultrahigh‐resolution measurements reveal a range of complex dynamics that cannot be resolved by standard measurements. Furthermore, the standard meas. . .
Date: 10/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL080291 Available at:
More Details
Authors: Engebretson M. J., Posch J. L., Capman N. S. S., Campuzano N. G., ělik P., et al.
Title: MMS, Van Allen Probes, GOES 13, and Ground Based Magnetometer Observations of EMIC Wave Events Before, During, and After a Modest Interplanetary Shock
Abstract: The stimulation of EMIC waves by a magnetospheric compression is perhaps the closest thing to a controlled experiment that is currently possible in magnetospheric physics, in that one prominent factor that can increase wave growth acts at a well‐defined time. We present a detailed analysis of EMIC waves observed in the outer dayside magnetosphere by the four Magnetosphere Multiscale (MMS) spacecraft, Van Allen Probe A, and GOES 13, and by four very high latitude ground magnetometer stations in the western hemisphere before, during, and after a modest interplanetary shock on December 14, 2015. Analysis shows several features consistent with current theory, as well as some unexpected features. During the most intense MMS wave burst, which began ~ 1 min after the end of a brief magnetosheat. . .
Date: 09/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025984 Available at:
More Details