Biblio

Found 2 results
Filters: Author is Takashima, T.  [Clear All Filters]
2018
Authors: Kurita S., Miyoshi Y, Shiokawa K., Higashio N., Mitani T., et al.
Title: Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations
Abstract: There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground‐based network observations. Arase observed a signature of MeV electron loss by EMIC waves, and the satellite and ground‐based observations constrained spatial‐temporal variations of the EMIC wave activity during the loss event. Multi‐satellite observation of MeV electron fluxes showed that ~2.5 MeV electron fluxes substantia. . .
Date: 11/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL080262 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080262
More Details
2019
Authors: Teramoto M., Hori T., Saito S., Miyoshi Y, Kurita S., et al.
Title: Remote Detection of Drift Resonance Between Energetic Electrons and Ultralow Frequency Waves: Multisatellite Coordinated Observation by Arase and Van Allen Probes
Abstract: We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])‐B satellites. On 30 March 2017, both Arase and RBSP‐B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. Arase did not observe Pc5 pulsations, while they were observed by RBSP‐B. The clear dispersion signature of the relativistic electron fluctuations observed by Arase indicates that the source region is limited to the postnoon to the dusk sector. This is confirmed by. . .
Date: 11/2019 Publisher: Geophysical Research Letters Pages: 11642 - 11651 DOI: 10.1029/2019GL084379 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL084379
More Details