Biblio

Found 2 results
Filters: Author is Jun, Chae‐Woo  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Authors: Liu Nigang, Su Zhenpeng, Gao Zhonglei, Zheng Huinan, Wang Yuming, et al.
Title: Comprehensive Observations of Substorm‐Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation
Abstract: Plasmaspheric hiss is an important whistler‐mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm‐injected electron instability, spreading within the plasmasphere, and dissipating over a large spatial scale. During substorms, hot electrons were injected energy‐dispersively into the plasmasphere near the dawnside and, probably through a combination of linear and nonlinear cyclotron res. . .
Date: 01/2020 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL086040 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL086040
More Details
R
Authors: Yue Chao, Jun Chae‐Woo, Bortnik Jacob, An Xin, Ma Qianli, et al.
Title: The Relationship Between EMIC Wave Properties and Proton Distributions Based on Van Allen Probes Observations
Abstract: Plasma kinetic theory predicts that sufficiently anisotropic proton distribution will excite electromagnetic ion cyclotron (EMIC) waves, which in turn relax the proton distribution to a marginally stable state creating an upper bound on the relaxed proton anisotropy. Here, using EMIC wave observations and coincident plasma measurements made by Van Allen Probes in the inner magnetosphere, we show that the proton distributions are well constrained by this instability to a marginally stable state. Near the threshold, the probability of EMIC wave occurrence is highest, having left‐handed polarization and observed near the magnetic equator with relatively small wave normal angles, indicating that these waves are locally generated. In addition, EMIC waves are distributed in two magnetic local . . .
Date: 04/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082633 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082633
More Details