Found 2 results
Filters: Author is Clilverd, M. A.  [Clear All Filters]
Authors: Oyama S., Kero A., Rodger C. J., Clilverd M A, Miyoshi Y, et al.
Title: Energetic electron precipitation and auroral morphology at the substorm recovery phase
Abstract: It is well known that auroral patterns at the substorm recovery phase are characterized by diffuse or patch structures with intensity pulsation. According to satellite measurements and simulation studies, the precipitating electrons associated with these aurorae can reach or exceed energies of a few hundreds of keV through resonant wave-particle interactions in the magnetosphere. However, because of difficulty of simultaneous measurements, the dependency of energetic electron precipitation (EEP) on auroral morphological changes in the mesoscale has not been investigated to date. In order to study this dependency, we have analyzed data from the European Incoherent Scatter (EISCAT) radar, the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) riometer, collocated cameras, ground-based m. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023484 Available at:
More Details
Authors: Millan R M, McCarthy M P, Sample J G, Smith D M, Thompson L D, et al.
Title: The Balloon Array for RBSP Relativistic Electron Losses (BARREL)
Abstract: BARREL is a multiple-balloon investigation designed to study electron losses from Earth’s Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL augments the Radiation Belt Storm Probes mission by providing measurements of relativistic electron precipitation with a pair of Antarctic balloon campaigns that will be conducted during the Austral summers (January-February) of 2013 and 2014. During each campaign, a total of 20 small (∼20 kg) stratospheric balloons will be successively launched to maintain an array of ∼5 payloads spread across ∼6 hours of magnetic local time in the region that magnetically maps to the radiation belts. Each balloon carries an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electr. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-9971-z Available at:
More Details