Biblio

Found 7 results
Filters: Author is Keika, Kunihiro  [Clear All Filters]
2018
Authors: Keika Kunihiro, Seki Kanako, é Masahito, Miyoshi Yoshizumi, Lanzerotti Louis J., et al.
Title: Three-Step Buildup of the 17 March 2015 Storm Ring Current: Implication for the Cause of the Unexpected Storm Intensification
Abstract: We examine the spatiotemporal variations of the energy density and the energy spectral evolution of energetic ions in the inner magnetosphere during the main phase of the 17 March 2015 storm, using data from the RBSPICE and EMFISIS instruments onboard Van Allen Probes. The storm developed in response to two southward IMF intervals separated by about 3 h. In contrast to two steps seen in the Dst/SYM-H index, the ring current ion population evolved in three steps: the first subphase was apparently caused by the earlier southward IMF, and the subsequent subphases occurred during the later southward IMF period. Ion energy ranges that contribute to the ring current differed between the three subphases. We suggest that the spectral evolution resulted from the penetration of different plasma shee. . .
Date: 01/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024462 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2017JA024462/full
More Details
2016
Authors: Martinez-Calderon Claudia, Shiokawa Kazuo, Miyoshi Yoshizumi, Keika Kunihiro, Ozaki Mitsunori, et al.
Title: ELF/VLF wave propagation at subauroral latitudes: Conjugate observation between the ground and Van Allen Probes A
Abstract: We report simultaneous observation of ELF/VLF emissions, showing similar spectral and frequency features, between a VLF receiver at Athabasca (ATH), Canada, (L = 4.3) and Van Allen Probes A (Radiation Belt Storm Probes (RBSP) A). Using a statistical database from 1 November 2012 to 31 October 2013, we compared a total of 347 emissions observed on the ground with observations made by RBSP in the magnetosphere. On 25 February 2013, from 12:46 to 13:39 UT in the dawn sector (04–06 magnetic local time (MLT)), we observed a quasiperiodic (QP) emission centered at 4 kHz, and an accompanying short pulse lasting less than a second at 4.8 kHz in the dawn sector (04–06 MLT). RBSP A wave data showed both emissions as right-hand polarized with their Poynting vector earthward to the Northern Hemisp. . .
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 5384 - 5393 DOI: 10.1002/jgra.v121.610.1002/2015JA022264 Available at: http://doi.wiley.com/10.1002/2015JA022264
More Details
Authors: Keika Kunihiro, Seki Kanako, é Masahito, Machida Shinobu, Miyoshi Yoshizumi, et al.
Title: Storm time impulsive enhancements of energetic oxygen due to adiabatic acceleration of preexisting warm oxygen in the inner magnetosphere
Abstract: We examine enhancements of energetic (>50 keV) oxygen ions observed by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on board the Van Allen Probes spacecraft in the inner magnetosphere (L ~ 6) at 22–23 h magnetic local time (MLT) during an injection event of the 6 June 2013 storm. Simultaneous observations by two Van Allen Probes spacecraft located close together (~0.5 RE) indicate that particle injections occurred in the premidnight sector (< ~24 h MLT). We also examine the evolution of the proton and oxygen energy spectra at L ~ 6 during the injection event. The spectral slope did not significantly change during the storm. The oxygen phase space density (PSD) was shifted toward higher PSD in a wide range of the first adiabatic invariant. . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 7739 - 7752 DOI: 10.1002/2016JA022384 Available at: http://doi.wiley.com/10.1002/2016JA022384
More Details
2015
Authors: Kataoka Ryuho, Shiota Daikou, Kilpua Emilia, and Keika Kunihiro
Title: Pileup accident hypothesis of magnetic storm on 17 March 2015
Abstract: We propose a “pileup accident” hypothesis, based on the solar wind data analysis and magnetohydrodynamics modeling, to explain unexpectedly geoeffective solar wind structure which caused the largest magnetic storm so far during the solar cycle 24 on 17 March 2015: First, a fast coronal mass ejection with strong southward magnetic fields both in the sheath and in the ejecta was followed by a high-speed stream from a nearby coronal hole. This combination resulted in less adiabatic expansion than usual to keep the high speed, strong magnetic field, and high density within the coronal mass ejection. Second, preceding slow and high-density solar wind was piled up ahead of the coronal mass ejection just before the arrival at the Earth to further enhance its magnetic field and density. Finall. . .
Date: 07/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064816 Available at: http://doi.wiley.com/10.1002/2015GL064816
More Details
2014
Authors: Gerrard Andrew, Lanzerotti Louis, Gkioulidou Matina, Mitchell Donald, Manweiler Jerry, et al.
Title: Initial Measurements of O-ion and He-ion Decay Rates Observed from the Van Allen Probes RBSPICE Instrument
Abstract: H-ion (~45-keV to ~600-keV), He-ion (~65-keV to ~520-keV), and O-ion (~140-keV to ~1130-keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first nine months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. Of unique interest to ring current dynamics are the spatial-temporal decay characteristics of the two injected populations. We observe that He-ions decay more quickly at lower L-shells, on the orderof ~0.8-day at L-shells of 3–4, and decay more slowly with higher L-she. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020374 Available at: http://doi.wiley.com/10.1002/2014JA020374
More Details
2012
Authors: Min Kyungguk, Lee Jeongwoo, Keika Kunihiro, and Li W
Title: Global distribution of EMIC waves derived from THEMIS observations
Abstract: [1] Electromagnetic ion cyclotron (EMIC) waves play an important role in magnetospheric dynamics and their global distribution has been of great interest. This paper presents the distribution of EMIC waves over a broader range than ever before, as enabled by observations with the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft from 2007 to 2010. Our major findings are: (1) There are two major peaks in the EMIC wave occurrence probability. One is at dusk and 8–12 RE where the helium band dominates the hydrogen band waves. The other is at dawn and 10–12 RE where the hydrogen band dominates the helium band waves. (2) In terms of wave spectral power the dusk events are stronger (≈10 nT2/Hz) than the dawn events (≈3 nT2/Hz). (3) The dawn . . .
Date: 05/2012 Publisher: Journal of Geophysical Research DOI: 10.1029/2012JA017515
More Details
2010
Authors: Min Kyungguk, Lee Jeongwoo, and Keika Kunihiro
Title: Chorus wave generation near the dawnside magnetopause due to drift shell splitting of substorm-injected electrons
Abstract: We study the relationship between the electron injection and the chorus waves during a substorm event on 23 March 2007. The chorus waves were detected at high geomagnetic latitude (∼70°S) Antarctic observatories in the range of 0600–0900 h in magnetic local time (MLT). Electrons drifting from the injection event were measured by two LANL spacecraft at 0300 and 0900 MLT. The mapping of auroral brightening areas to the magnetic equator shows that the injection occurred in an MLT range of 2200–2400. This estimate is consistent with observations by the THEMIS A, B, and D spacecraft (which were located at 2100 MLT and did not observe electron injections). Our backward model tracing from the magnetic equator near the dawnside magnetopause (which magnetically connects to the Antar. . .
Date: 10/2010 Publisher: American Geophysical Union DOI: 10.1029/2010JA015474
More Details