Biblio

Found 54 results
Filters: Author is Hospodarsky, G. B.  [Clear All Filters]
2019
Authors: Capannolo L., Li W, Ma Q, Shen X.‐C., Zhang X.‐J., et al.
Title: Energetic Electron Precipitation: Multievent Analysis of Its Spatial Extent During EMIC Wave Activity
Abstract: Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC‐driven precipitation, which occurred near the dusk sector observed by multiple Low‐Earth‐Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred from few tens of keV up to hundreds of keV, while the electron precipitation was mainly at relativistic energies. We compare observations of electron precipitation with calculations using quasi‐linear theory. For all cases, we consider the effects of other magn. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026291 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026291
More Details
Authors: Ma Q, Li W, Yue C., Thorne R M, Bortnik J, et al.
Title: Ion Heating by Electromagnetic Ion Cyclotron Waves and Magnetosonic Waves in the Earth's Inner Magnetosphere
Abstract: Electromagnetic ion cyclotron (EMIC) waves and magnetosonic waves are commonly observed in the Earth's magnetosphere associated with enhanced ring current activity. Using wave and ion measurements from the Van Allen Probes, we identify clear correlations between the hydrogen‐ and helium‐band EMIC waves with the enhancement of trapped helium and oxygen ion fluxes, respectively. We calculate the diffusion coefficients of different ion species using quasi‐linear theory to understand the effects of resonant scattering by EMIC waves. Our calculations indicate that EMIC waves can cause pitch angle scattering loss of several keV to hundreds of keV ions, and heating of tens of eV to several keV helium and oxygen ions by hydrogen‐ and helium‐band EMIC waves, respectively. Moreover, we fou. . .
Date: 06/2019 Publisher: Geophysical Research Letters Pages: 6258 - 6267 DOI: 10.1029/2019GL083513 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083513
More Details
Authors: Zhang X.‐J., Mourenas D., Artemyev A. V., Angelopoulos V, Bortnik J, et al.
Title: Nonlinear Electron Interaction With Intense Chorus Waves: Statistics of Occurrence Rates
Abstract: A comprehensive statistical analysis on 8 years of lower‐band chorus wave packets measured by the Van Allen Probes and THEMIS spacecraft is performed to examine whether, when, and where these waves are above the theoretical threshold for nonlinear resonant wave‐particle interaction. We find that ∼5–30% of all chorus waves interact nonlinearly with ∼30‐ to 300‐keV electrons possessing equatorial pitch angles of >40° in the outer radiation belt, especially during disturbed (AE>500 nT) periods with energetic particles associated with injections from the plasma sheet. Such considerable occurrence rates of nonlinear interactions imply that the evolution of energetic electron fluxes should be dominated by nonlinear effects, rather than by quasi‐linear diffusion as commonly assum. . .
Date: 06/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083833 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083833
More Details
Authors: Li W, Shen X.‐C., Ma Q, Capannolo L., Shi R., et al.
Title: Quantification of Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric Hiss, and Exohiss
Abstract: Whistler mode waves are important for precipitating energetic electrons into Earth's upper atmosphere, while the quantitative effect of each type of whistler mode wave on electron precipitation is not well understood. In this letter, we evaluate energetic electron precipitation driven by three types of whistler mode waves: plume whistler mode waves, plasmaspheric hiss, and exohiss observed outside the plasmapause. By quantitatively analyzing three conjunction events between Van Allen Probes and POES/MetOp satellites, together with quasi‐linear calculation, we found that plume whistler mode waves are most effective in pitch angle scattering loss, particularly for the electrons from tens to hundreds of keV. Our new finding provides the first direct evidence of effective pitch angle scatter. . .
Date: 03/2019 Publisher: Geophysical Research Letters Pages: 3615 - 3624 DOI: 10.1029/2019GL082095 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082095
More Details
2018
Authors: ěmec F., ík O., Boardsen S. A., Hospodarsky G B, and Kurth W S
Title: Equatorial noise with quasiperiodic modulation: Multipoint observations by the Van Allen Probes spacecraft
Abstract: Electromagnetic wave measurements performed by the two Van Allen Probes spacecraft are used to analyze equatorial noise emissions with a quasiperiodic modulation of the wave intensity. These waves are confined to the vicinity of the geomagnetic equator, and they occur primarily on the dayside. In situ plasma number density measurements are used to evaluate density variations related to the wave occurrence. It is shown that the events are sometimes effectively confined to low density regions, being observed at successive satellite passes over a time duration as long as one hour. The events typically occur outside the plasmasphere, and they are often cease to exist just at the plasmapause. The analysis of the spatial separations of the spacecraft at the times when the events were observed si. . .
Date: 05/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025482 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025482
More Details
Authors: Zhang X.-J., Thorne R., Artemyev A., Mourenas D., Angelopoulos V, et al.
Title: Properties of intense field-aligned lower-band chorus waves: Implications for nonlinear wave-particle interactions
Abstract: Resonant interactions between electrons and chorus waves are responsible for a wide range of phenomena in near‐Earth space (e.g., diffuse aurora, acceleration of MeV electrons, etc.). Although quasi‐linear diffusion is believed to be the primary paradigm for describing such interactions, an increasing number of investigations suggest that nonlinear effects are also important in controlling the rapid dynamics of electrons. However, present models of nonlinear wave‐particle interactions, which have been successfully used to describe individual short‐term events, are not directly applicable for a statistical evaluation of nonlinear effects and the long‐term dynamics of the outer radiation belt, because they lack information on the properties of intense (nonlinearly resonating with e. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025390 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025390
More Details
Authors: Ma Q, Li W, Bortnik J, Thorne R M, Chu X., et al.
Title: Quantitative Evaluation of Radial Diffusion and Local Acceleration Processes During GEM Challenge Events
Abstract: We simulate the radiation belt electron flux enhancements during selected Geospace Environment Modeling (GEM) challenge events to quantitatively compare the major processes involved in relativistic electron acceleration under different conditions. Van Allen Probes observed significant electron flux enhancement during both the storm time of 17–18 March 2013 and non–storm time of 19–20 September 2013, but the distributions of plasma waves and energetic electrons for the two events were dramatically different. During 17–18 March 2013, the SYM‐H minimum reached −130 nT, intense chorus waves (peak Bw ~140 pT) occurred at 3.5 < L < 5.5, and several hundred keV to several MeV electron fluxes increased by ~2 orders of magnitude mostly at 3.5 < L < 5.5. During 19–20 September 2013, th. . .
Date: 03/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA025114 Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JA025114
More Details
Authors: ěmec F., Hospodarsky G B, ěková B., Demekhov A. G., Pasmanik D. L., et al.
Title: Quasiperiodic Whistler Mode Emissions Observed by the Van Allen Probes Spacecraft
Abstract: Quasiperiodic (QP) emissions are whistler mode electromagnetic waves observed in the inner magnetosphere which exhibit a QP time modulation of the wave intensity. We analyze 768 QP events observed during the first five years of the operation of the Van Allen Probes spacecraft (09/2012–10/2017). Multicomponent wave measurements performed in the equatorial region, where the emissions are likely generated, are used to reveal new experimental information about their properties. We show that the events are observed nearly exclusively inside the plasmasphere. Wave frequencies are mostly between about 0.5 and 4 kHz. The events observed at larger radial distances and on the duskside tend to have slightly lower frequencies than the emissions observed elsewhere. The maximum event frequencies are l. . .
Date: 10/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026058 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026058
More Details
Authors: Capannolo L., Li W, Ma Q, Zhang X.-J., Redmon R. J., et al.
Title: Understanding the Driver of Energetic Electron Precipitation Using Coordinated Multisatellite Measurements
Abstract: Magnetospheric plasma waves play a significant role in ring current and radiation belt dynamics, leading to pitch angle scattering loss and/or stochastic acceleration of the particles. During a non‐storm time dropout event on 24 September 2013, intense electromagnetic ion cyclotron (EMIC) waves were detected by Van Allen Probe A (Radiation Belt Storm Probes‐A). We quantitatively analyze a conjunction event when Van Allen Probe A was located approximately along the same magnetic field line as MetOp‐01, which detected simultaneous precipitation of >30 keV protons and energetic electrons over an unexpectedly broad energy range (>~30 keV). Multipoint observations together with quasi‐linear theory provide direct evidence that the observed electron precipitation at higher energy (>~700 k. . .
Date: 07/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL078604 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL078604
More Details
2017
Authors: Ma Q, Li W, Thorne R M, Bortnik J, Reeves G D, et al.
Title: Diffusive transport of several hundred keV electrons in the Earth's slot region
Abstract: We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L~2.7 to L~2.4, and the flux levels decreased by a factor of ~2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a 3-dimentional diffusion code, which reproduced the energy-dependent transport of electrons from ~100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the . . .
Date: 09/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024452 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024452/full
More Details
Authors: Hartley D. P., Kletzing C A, Kurth W S, Hospodarsky G B, Bounds S R, et al.
Title: An improved sheath impedance model for the Van Allen probes EFW instrument: Effects of the spin axis antenna
Abstract: A technique to quantitatively determine the sheath impedance of the Van Allen Probes Electric Field and Waves (EFW) instrument is presented. This is achieved, for whistler mode waves, through a comparison between the total electric field wave power spectra calculated from magnetic field observations and cold plasma theory, and the total electric field wave power measured by the EFW spherical double probes instrument. In a previous study, a simple density-dependent sheath impedance model was developed in order to account for the differences between the observed and calculated wave electric field. The current study builds on this previous work by investigating the remaining discrepancies, identifying their cause, and developing an improved sheath impedance correction. Analysis reveals that a. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023597 Available at: http://doi.wiley.com/10.1002/2016JA023597
More Details
Authors: Ma Q, Artemyev A. V., Mourenas D., Li W, Thorne R M, et al.
Title: Very Oblique Whistler Mode Propagation in the Radiation Belts: Effects of Hot Plasma and Landau Damping
Abstract: Satellite observations of a significant population of very oblique chorus waves in the outer radiation belt have fueled considerable interest in the effects of these waves on energetic electron scattering and acceleration. However, corresponding diffusion rates are extremely sensitive to the refractive index N, controlled by hot plasma effects including Landau damping and wave dispersion modifications by suprathermal (15–100 eV) electrons. A combined investigation of wave and electron distribution characteristics obtained from the Van Allen Probes shows that peculiarities of the measured electron distribution significantly reduce Landau damping, allowing wave propagation with high N ∼ 100–200. Further comparing measured refractive indexes with theoretical estimates incorporating hot . . .
Date: 12/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL075892 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL075892/full
More Details
2016
Authors: Ma Q, Li W, Thorne R M, Bortnik J, Reeves G D, et al.
Title: Characteristic energy range of electron scattering due to plasmaspheric hiss
Abstract: We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth's inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth's outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to the first adiabatic invariant μ = 4–200 MeV/G. The electron diffusion coefficients due to hiss scattering are calculated at L = 2–6, and the modeled energy band of effective pitch angle scattering is also well correlated with the constant μ lines and is consistent with the observed e. . .
Date: 11/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023311 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023311/full
More Details
Authors: Zhang X.-J., Li W, Ma Q, Thorne R M, Angelopoulos V, et al.
Title: Direct evidence for EMIC wave scattering of relativistic electrons in space
Abstract: Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes. EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the. . .
Date: 07/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022521 Available at: http://doi.wiley.com/10.1002/2016JA022521
More Details
Authors: Li W, Santolik O, Bortnik J, Thorne R M, Kletzing C A, et al.
Title: New Chorus Wave Properties Near the Equator from Van Allen Probes Wave Observations
Abstract: The chorus wave properties are evaluated using Van Allen Probes data in the Earth's equatorial magnetosphere. Two distinct modes of lower band chorus are identified: a quasi-parallel mode and a quasi-electrostatic mode, whose wave normal direction is close to the resonance cone. Statistical results indicate that the quasi-electrostatic (quasi-parallel) mode preferentially occurs during relatively quiet (disturbed) geomagnetic activity at lower (higher) L shells. Although the magnetic intensity of the quasi-electrostatic mode is considerably weaker than the quasi-parallel mode, their electric intensities are comparable. A newly identified feature of the quasi-electrostatic mode is that its frequency peaks at higher values compared to the quasi-parallel mode that exhibits a broad frequency s. . .
Date: 05/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL068780 Available at: http://doi.wiley.com/10.1002/2016GL068780
More Details
Authors: Zhang X.-J., Li W, Thorne R M, Angelopoulos V, Ma Q, et al.
Title: Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event
Abstract: Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed by Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, t. . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022517 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022517/abstract
More Details
Authors: Li W, Ma Q, Thorne R M, Bortnik J, Zhang X.-J., et al.
Title: Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations
Abstract: Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak loca. . .
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 5520 - 5536 DOI: 10.1002/jgra.v121.610.1002/2016JA022400 Available at: http://doi.wiley.com/10.1002/2016JA022400
More Details
Authors: Ma Q, Li W, Thorne R M, Nishimura Y., Zhang X.-J., et al.
Title: Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt
Abstract: The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth's radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusive movement in differential energy fluxes, and the radial extent to which electrons can penetra. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022507 Available at: http://doi.wiley.com/10.1002/2016JA022507
More Details
Authors: Zhang X.-J., Li W, Thorne R M, Angelopoulos V, Bortnik J, et al.
Title: Statistical distribution of EMIC wave spectra: Observations from Van Allen Probes
Abstract: It has been known that electromagnetic ion cyclotron (EMIC) waves can precipitate ultrarelativistic electrons through cyclotron resonant scattering. However, the overall effectiveness of this mechanism has yet to be quantified, because it is difficult to obtain the global distribution of EMIC waves that usually exhibit limited spatial presence. We construct a statistical distribution of EMIC wave frequency spectra and their intensities based on Van Allen Probes measurements from September 2012 to December 2015. Our results show that as the ratio of plasma frequency over electron gyrofrequency increases, EMIC wave power becomes progressively dominated by the helium band. There is a pronounced dawn-dusk asymmetry in the wave amplitude and the frequency spectrum. The frequency spectrum does n. . .
Date: 12/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071158 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071158/full
More Details
Authors: Li W, Mourenas D., Artemyev A. V., Bortnik J, Thorne R M, et al.
Title: Unraveling the excitation mechanisms of highly oblique lower band chorus waves
Abstract: Excitation mechanisms of highly oblique, quasi-electrostatic lower band chorus waves are investigated using Van Allen Probes observations near the equator of the Earth's magnetosphere. Linear growth rates are evaluated based on in situ, measured electron velocity distributions and plasma conditions and compared with simultaneously observed wave frequency spectra and wave normal angles. Accordingly, two distinct excitation mechanisms of highly oblique lower band chorus have been clearly identified for the first time. The first mechanism relies on cyclotron resonance with electrons possessing both a realistic temperature anisotropy at keV energies and a plateau at 100–500 eV in the parallel velocity distribution. The second mechanism corresponds to Landau resonance with a 100–500 eV . . .
Date: 09/2016 Publisher: Geophysical Research Letters Pages: 8867 - 8875 DOI: 10.1002/grl.v43.1710.1002/2016GL070386 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL070386/abstract
More Details
Authors: Hartley D. P., Kletzing C A, Kurth W S, Bounds S R, Averkamp T. F., et al.
Title: Using the cold plasma dispersion relation and whistler-mode waves to quantify the antenna sheath impedance of the Van Allen Probes EFW instrument
Abstract: Cold plasma theory and parallel wave propagation are often assumed when approximating the whistler mode magnetic field wave power from electric field observations. The current study is the first to include the wave normal angle from the Electric and Magnetic Field Instrument Suite and Integrated Science package on board the Van Allen Probes in the conversion factor, thus allowing for the accuracy of these assumptions to be quantified. Results indicate that removing the assumption of parallel propagation does not significantly affect calculated plasmaspheric hiss wave powers. Hence, the assumption of parallel propagation is valid. For chorus waves, inclusion of the wave normal angle in the conversion factor leads to significant alterations in the distribution of wave power ratios (observed/. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022501 Available at: http://doi.wiley.com/10.1002/2016JA022501
More Details
2015
Authors: de Soria-Santacruz M., Li W, Thorne R M, Ma Q, Bortnik J, et al.
Title: Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Validation with conjunctive Van Allen Probes observations
Abstract: Plasmaspheric hiss plays an important role in controlling the overall structure and dynamics of the Earth's radiation belts. The interaction of plasmaspheric hiss with radiation belt electrons is commonly evaluated using diffusion codes, which rely on statistical models of wave observations that may not accurately reproduce the instantaneous global wave distribution, or the limited in-situ satellite wave measurements from satellites. This paper evaluates the performance and limitations of a novel technique capable of inferring wave amplitudes from low-altitude electron flux observations from the POES spacecraft, which provide extensive coverage in L-shell and MLT. We found that, within its limitations, this technique could potentially be used to build a dynamic global model of the plasmasp. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021148 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2015JA021148/abstract
More Details
Authors: de Soria-Santacruz M., Li W, Thorne R M, Ma Q, Bortnik J, et al.
Title: Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Technique sensitivity analysis
Abstract: A novel technique capable of inferring wave amplitudes from low-altitude electron measurements from the POES spacecraft has been previously proposed to construct a global dynamic model of chorus and plasmaspheric hiss waves. In this paper we focus on plasmaspheric hiss, which is an incoherent broadband emission that plays a dominant role in the loss of energetic electrons from the inner magnetosphere. We analyze the sensitivity of the POES technique to different inputs used to infer the hiss wave amplitudes during three conjunction events with the Van Allen Probes. These amplitudes are calculated with different input models of the plasma density, wave frequency spectrum, and electron energy spectrum, and the results are compared to the wave observations from the twin Van Allen Probes. Only. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020941 Available at: http://doi.wiley.com/10.1002/2014JA020941
More Details
Authors: Halford A J, McGregor S. L., Murphy K. R., Millan R M, Hudson M K, et al.
Title: BARREL observations of an ICME-Shock impact with the magnetosphere and the resultant radiation belt electron loss.
Abstract: The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) mission of opportunity working in tandem with the Van Allen Probes was designed to study the loss of radiation belt electrons to the ionosphere and upper atmosphere. BARREL is also sensitive to X-rays from other sources. During the second BARREL campaign the Sun produced an X-class flare followed by a solar energetic particle event (SEP) associated with the same active region. Two days later on 9 January 2014 the shock generated by the coronal mass ejection (CME) originating from the active region hit the Earth while BARREL was in a close conjunction with the Van Allen Probes. Time History Events and Macroscale Interactions during Substorms (THEMIS) observed the impact of the ICME-shock near the magnetopause, and th. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020873 Available at: http://doi.wiley.com/10.1002/2014JA020873
More Details
Authors: Chaston C. C., Bonnell J. W., Kletzing C A, Hospodarsky G B, Wygant J R, et al.
Title: Broadband low frequency electromagnetic waves in the inner magnetosphere
Abstract: A prominent yet largely unrecognized feature of the inner magnetosphere associated with particle injections, and more generally geomagnetic storms, is the occurrence of broadband electromagnetic field fluctuations over spacecraft frame frequencies (fsc) extending from effectively zero to fsc ≳ 100 Hz. Using observations from the Van Allen Probes we show that these waves most commonly occur pre-midnight but are observed over a range of local times extending into the dayside magnetosphere. We find that the variation of magnetic spectral energy density with fsc obeys inline image over several decades with a spectral break-point at fb ≈1 Hz. The values for α are log normally distributed with α = 1.9 ± 0.6 for fsc < fb andα = 2.9 ± 0.6 for fsc > fb. A is . . .
Date: 09/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021690 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015JA021690/abstract
More Details
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Disappearance of plasmaspheric hiss following interplanetary shock
Abstract: Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetop. . .
Date: 03/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063906 Available at: http://doi.wiley.com/10.1002/2015GL063906
More Details
Authors: Kurth W S, De Pascuale S., Faden J. B., Kletzing C A, Hospodarsky G B, et al.
Title: Electron Densities Inferred from Plasma Wave Spectra Obtained by the Waves Instrument on Van Allen Probes
Abstract: The twin Van Allen Probe spacecraft, launched in August 2012, carry identical scientific payloads. The Electric and Magnetic Fields Instrument Suite and Integrated Science (EMFISIS) suite includes a plasma wave instrument (Waves) that measures three magnetic and three electric components of plasma waves in the frequency range of 10 Hz to 12 kHz using triaxial search coils and the Electric Fields and Waves (EFW) triaxial electric field sensors. The Waves instrument also measures a single electric field component of waves in the frequency range of 10 to 500 kHz. A primary objective of the higher frequency measurements is the determination of the electron density ne at the spacecraft, primarily inferred from the upper hybrid resonance frequency fuh. Considerable work has gone into developing . . .
Date: 01/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020857 Available at: http://doi.wiley.com/10.1002/2014JA020857
More Details
Authors: Ma Qianli, Li Wen, Thorne Richard M, Bortnik Jacob, Kletzing C A, et al.
Title: Electron scattering by magnetosonic waves in the inner magnetosphere
Abstract: We investigate the importance of electron scattering by magnetosonic waves in the Earth's inner magnetosphere. A statistical survey of the magnetosonic wave amplitude and wave frequency spectrum, as a function of geomagnetic activity, is performed using the Van Allen Probes wave measurements, and is found to be generally consistent with the wave distribution obtained from previous spacecraft missions. Outside the plasmapause the statistical frequency distribution of magnetosonic waves follows the variation of the lower hybrid resonance frequency, but this trend is not observed inside the plasmasphere. Drift and bounce averaged electron diffusion rates due to magnetosonic waves are calculated using a recently developed analytical formula. The resulting time scale of electron energization du. . .
Date: 12/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021992 Available at: http://doi.wiley.com/10.1002/2015JA021992http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021992
More Details
Authors: Li W, Chen L, Bortnik J, Thorne R M, Angelopoulos V, et al.
Title: First Evidence for Chorus at a Large Geocentric Distance as a Source of Plasmaspheric Hiss: Coordinated THEMIS and Van Allen Probes Observation
Abstract: Recent ray tracing suggests that plasmaspheric hiss can originate from chorus observed outside of the plasmapause. Although a few individual events have been reported to support this mechanism, the number of reported conjugate events is still very limited. Using coordinated observations between THEMIS and Van Allen Probes, we report on an interesting event, where chorus was observed at a large L-shell (~9.8), different from previously reported events at L < 6, but still exhibited a remarkable correlation with hiss observed in the outer plasmasphere (L ~ 5.5). Ray tracing indicates that a subset of chorus can propagate into the observed location of hiss on a timescale of ~ 5-6 s, in excellent agreement with the observed time lag between chorus and hiss. This provides quantitative support th. . .
Date: 01/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL062832 Available at: http://doi.wiley.com/10.1002/2014GL062832
More Details
Authors: Ma Q, Li W, Thorne R M, Ni B, Kletzing C A, et al.
Title: Modeling inward diffusion and slow decay of energetic electrons in the Earth's outer radiation belt
Abstract: A new 3D diffusion code is used to investigate the inward intrusion and slow decay of energetic radiation belt electrons (>0.5 MeV) observed by the Van Allen Probes during a 10-day quiet period in March 2013. During the inward transport the peak differential electron fluxes decreased by approximately an order of magnitude at various energies. Our 3D radiation belt simulation including radial diffusion and pitch angle and energy diffusion by plasmaspheric hiss and Electromagnetic Ion Cyclotron (EMIC) waves reproduces the essential features of the observed electron flux evolution. The decay timescales and the pitch angle distributions in our simulation are consistent with the Van Allen Probes observations over multiple energy channels. Our study suggests that the quiet-time energetic electro. . .
Date: 02/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL062977 Available at: http://doi.wiley.com/10.1002/2014GL062977
More Details
Authors: Zhu Hui, Su Zhenpeng, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons
Abstract: Exohiss waves are whistler mode hiss observed in the plasmatrough region. We present a case study of exohiss waves and the corresponding background plasma distributions observed by the Van Allen Probes in the dayside low-latitude region. The analysis of wave Poynting fluxes, suprathermal electron fluxes and cold electron densities supports the scenario that exohiss leaks from the plasmasphere into the plasmatrough. Quasilinear calculations further reveal that exohiss can potentially cause the resonant scattering loss of radiation belt electrons ~Date: 02/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL062964 Available at: http://doi.wiley.com/10.1002/2014GL062964
More Details
Authors: Li W, Ma Q, Thorne R M, Bortnik J, Kletzing C A, et al.
Title: Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their Effects on radiation belt electron dynamics
Abstract: Plasmaspheric hiss is known to play an important role in controlling the overall structure and dynamics of radiation belt electrons inside the plasmasphere. Using newly available Van Allen Probes wave data, which provide excellent coverage in the entire inner magnetosphere, we evaluate the global distribution of the hiss wave frequency spectrum and wave intensity for different levels of substorm activity. Our statistical results show that observed hiss peak frequencies are generally lower than the commonly adopted value (~550 Hz), which was in frequent use, and that the hiss wave power frequently extends below 100 Hz, particularly at larger L shells (> ~3) on the dayside during enhanced levels of substorm activity. We also compare electron pitch angle scattering rates caused by hiss . . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021048 Available at: http://doi.wiley.com/10.1002/2015JA021048
More Details
Authors: He Yihua, Xiao Fuliang, Zhou Qinghua, Yang Chang, Liu Si, et al.
Title: Van Allen Probes observation and modeling of chorus excitation and propagation during weak geomagnetic activities
Abstract: We report correlated data on nightside chorus waves and energetic electrons during two small storm periods: 1 November 2012 (Dst≈-45) and 14 January 2013 (Dst≈-18). The Van Allen Probes simultaneously observed strong chorus waves at locations L = 5.8 − 6.3, with a lower frequency band 0.1 − 0.5fce and a peak spectral density ∼[10−4 nT2/Hz. In the same period, the fluxes and anisotropy of energetic (∼ 10-300 keV) electrons were greatly enhanced in the interval of large negative interplanetary magnetic field Bz. Using a bi-Maxwellian distribution to model the observed electron distribution, we perform ray tracing simulations to show that nightside chorus waves are indeed produced by the observed electron distribution with a peak growth for a field-aligned propagation around bet. . .
Date: 07/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021376 Available at: http://doi.wiley.com/10.1002/2015JA021376
More Details
Authors: Liu Si, Xiao Fuliang, Yang Chang, He Yihua, Zhou Qinghua, et al.
Title: Van Allen Probes observations linking radiation belt electrons to chorus waves during 2014 multiple storms
Abstract: During 18 February to 2 March 2014, the Van Allen Probes encountered multiple geomagnetic storms and simultaneously observed intensified chorus and hiss waves. During this period, there were substantial enhancements in fluxes of energetic (53.8 − 108.3 keV) and relativistic (2 − 3.6 MeV) electrons. Chorus waves were excited at locations L = 4 − 6.2 after the fluxes of energetic were greatly enhanced, with a lower frequency band and wave amplitudes ∼ 20 − 100 pT. Strong hiss waves occurred primarily in the main phases or below the location L = 4 in the recovery phases. Relativistic electron fluxes decreased in the main phases due to the adiabatic (e.g., the magnetopause shadowing) or non-adiabatic (hiss-induced scattering) processes. In the recovery phase. . .
Date: 01/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020781 Available at: http://doi.wiley.com/10.1002/2014JA020781
More Details
2014
Authors: Li W, Ni B, Thorne R M, Bortnik J, Green J C, et al.
Title: Calculation of whistler-mode wave intensity using energetic electron precipitation
Abstract: The energetic electron population measured by multiple low-altitude POES satellites is used to infer whistlermode wave amplitudes using a physics-based inversion technique. We validate this technique by quantitatively analyzing a conjunction event between the Van Allen Probes and POES, and find that the inferred hiss wave amplitudes from POES electron measurements agree remarkably well with directly measured hiss waves amplitudes. We also use this technique to construct the global distribution of chorus wave intensity with extensive coverage over a broad L-MLT region during the 8–9 October 2012 storm and demonstrate that the inferred chorus wave amplitudes agree well with conjugate measurements of chorus wave amplitudes from the Van Allen Probes. The evolution of the whistler-mode wave i. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929965 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929965
More Details
Authors: Xiao Fuliang, Yang Chang, He Zhaoguo, Su Zhenpeng, Zhou Qinghua, et al.
Title: Chorus acceleration of radiation belt relativistic electrons during March 2013 geomagnetic storm
Abstract: The recent launching of Van Allen probes provides an unprecedent opportunity to investigate variations of the radiation belt relativistic electrons. During the 17–19 March 2013 storm, the Van Allen probes simultaneously detected strong chorus waves and substantial increases in fluxes of relativistic (2 − 4.5 MeV) electrons around L = 4.5. Chorus waves occurred within the lower band 0.1–0.5fce (the electron equatorial gyrofrequency), with a peak spectral density ∼10−4 nT2/Hz. Correspondingly, relativistic electron fluxes increased by a factor of 102–103 during the recovery phase compared to the main phase levels. By means of a Gaussian fit to the observed chorus spectra, the drift and bounce-averaged diffusion coefficients are calculated and then used to solve a 2-D Fokker-Planc. . .
Date: 05/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 3325 - 3332 DOI: 10.1002/2014JA019822 Available at: http://doi.wiley.com/10.1002/2014JA019822
More Details
Authors: Li W, Mourenas D., Artemyev A., Agapitov O., Bortnik J, et al.
Title: Evidence of stronger pitch angle scattering loss caused by oblique whistler-mode waves as compared with quasi-parallel waves
Abstract: Wave normal distributions of lower-band whistler-mode waves observed outside the plasmapause exhibit two peaks; one near the parallel direction and the other at very oblique angles. We analyze a number of conjunction events between the Van Allen Probes near the equatorial plane and POES satellites at conjugate low altitudes, where lower-band whistler-mode wave amplitudes were inferred from the two-directional POES electron measurements over 30–100 keV, assuming that these waves were quasi-parallel. For conjunction events, the wave amplitudes inferred from the POES electron measurements were found to be overestimated as compared with the Van Allen Probes measurements primarily for oblique waves and quasi-parallel waves with small wave amplitudes (< ~20 pT) measured at low latitudes. This . . .
Date: 08/2014 Publisher: Geophysical Research Letters Pages: n/a - n/a DOI: 10.1002/2014GL061260 Available at: http://doi.wiley.com/10.1002/2014GL061260
More Details
Authors: Zhou Qinghua, Xiao Fuliang, Yang Chang, Liu Si, Kletzing C A, et al.
Title: Excitation of nightside magnetosonic waves observed by Van Allen Probes
Abstract: During the recovery phase of the geomagnetic storm on 30-31 March 2013, Van Allen Probe A detected enhanced magnetosonic (MS) waves in a broad range of L =1.8-4.7 and MLT =17-22 h, with a frequency range ~10-100 Hz. In the meanwhile, distinct proton ring distributions with peaks at energies of ~10 keV, were also observed in L =3.2-4.6 and L =5.0-5.6. Using a subtracted bi-Maxwellian distribution to model the observed proton ring distribution, we perform three dimensional ray tracing to investigate the instability, propagation and spatial distribution of MS waves. Numerical results show that nightside MS waves are produced by proton ring distribution and grow rapidly from the source location L =5.6 to the location L =5.0, but remain nearly stable at locations L <5.0 Moreover, waves launched. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2014JA020481 Available at: http://doi.wiley.com/10.1002/2014JA020481
More Details
Authors: Santolik O, Kletzing C A, Kurth W S, Hospodarsky G B, and Bounds S R
Title: Fine structure of large-amplitude chorus wave packets
Abstract: Whistler mode chorus waves in the outer Van Allen belt can have consequences for acceleration of relativistic electrons through wave-particle interactions. New multicomponent waveform measurements have been collected by the Van Allen Probes Electric and Magnetic Field Instrument Suite and Integrated Science's Waves instrument. We detect fine structure of chorus elements with peak instantaneous amplitudes of a few hundred picotesla but exceptionally reaching up to 3 nT, i.e., more than 1% of the background magnetic field. The wave vector direction turns by a few tens of degrees within a single chorus element but also within its subpackets. Our analysis of a significant number of subpackets embedded in rising frequency elements shows that amplitudes of their peaks tend to decrease with frequ. . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 293 - 299 DOI: 10.1002/2013GL058889 Available at: http://doi.wiley.com/10.1002/2013GL058889
More Details
Authors: Chen Lunjin, Thorne Richard M, Bortnik Jacob, Li Wen, Horne Richard B, et al.
Title: Generation of Unusually Low Frequency Plasmaspheric Hiss
Abstract: It has been reported from Van Allen Probe observations that plasmaspheric hiss intensification in the outer plasmasphere, associated with a substorm injection on Sept 30 2012, occurred with a peak frequency near 100 Hz, well below the typical plasmaspheric hiss frequency range, extending down to ~20 Hz. We examine this event of unusually low frequency plasmaspheric hiss to understand its generation mechanism. Quantitative analysis is performed by simulating wave ray paths via the HOTRAY ray tracing code with measured plasma density and calculating ray path-integrated wave gain evaluated using the measured energetic electron distribution. We demonstrate that the growth rate due to substorm injected electrons is positive but rather weak, leading to small wave gain (~10 dB) during a sin. . .
Date: 08/2014 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL060628 Available at: http://doi.wiley.com/10.1002/2014GL060628
More Details
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons
Abstract: Local acceleration driven by whistler mode chorus waves largely accounts for the enhancement of radiation belt relativistic electron fluxes, whose favored region is usually considered to be the plasmatrough with magnetic local time approximately from midnight through dawn to noon. On 2 October 2013, the Van Allen Probes recorded a rarely reported event of intense duskside lower band chorus waves (with power spectral density up to 10−3nT2/Hz) in the low-latitude region outside of L=5. Such chorus waves are found to be generated by the substorm-injected anisotropic suprathermal electrons and have a potentially strong acceleration effect on the radiation belt energetic electrons. This event study demonstrates the possibility of broader spatial regions with effective electron acceleration by. . .
Date: 06/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 4266 - 4273 DOI: 10.1002/jgra.v119.610.1002/2014JA019919 Available at: http://doi.wiley.com/10.1002/jgra.v119.6http://doi.wiley.com/10.1002/2014JA019919
More Details
Authors: Su Zhenpeng, Xiao Fuliang, Zheng Huinan, He Zhaoguo, Zhu Hui, et al.
Title: Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes
Abstract: Storm time electron radiation belt dynamics have been widely investigated for many years. Here we present a rarely reported nonstorm time event of electron radiation belt evolution observed by the Van Allen Probes during 21–24 February 2013. Within 2 days, a new belt centering around L=5.8 formed and gradually merged with the original outer belt, with the enhancement of relativistic electron fluxes by a factor of up to 50. Strong chorus waves (with power spectral density up to 10−4nT2/Hz) occurred in the region L>5. Taking into account the local acceleration driven by these chorus waves, the two-dimensional STEERB can approximately reproduce the observed energy spectrums at the center of the new belt. These results clearly illustrate the complexity of electron radiation belt behaviors . . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 229 - 235 DOI: 10.1002/2013GL058912 Available at: http://doi.wiley.com/10.1002/2013GL058912
More Details
Authors: Li W, Ni B, Thorne R M, Bortnik J, Nishimura Y., et al.
Title: Quantifying hiss-driven energetic electron precipitation: A detailed conjunction event analysis
Abstract: We analyze a conjunction event between the Van Allen Probes and the low-altitude Polar Orbiting Environmental Satellite (POES) to quantify hiss-driven energetic electron precipitation. A physics-based technique based on quasi-linear diffusion theory is used to estimate the ratio of precipitated and trapped electron fluxes (R), which could be measured by the two-directional POES particle detectors, using wave and plasma parameters observed by the Van Allen Probes. The remarkable agreement between modeling and observations suggests that this technique is applicable for quantifying hiss-driven electron scattering near the bounce loss cone. More importantly, R in the 100–300 keV energy channel measured by multiple POES satellites over a broad L magnetic local time region can potentially pr. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1085 - 1092 DOI: 10.1002/2013GL059132 Available at: http://doi.wiley.com/10.1002/2013GL059132
More Details
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt
Abstract: We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by RBSP and THEMIS satellites, and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about 6 hours, with up to four orders of magnitude enhancement in the 30 keV-5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100% and 20% of the total subrelativistic (~0.1 MeV) and relativistic (2-5 MeV) electron . . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020709 Available at: http://doi.wiley.com/10.1002/2014JA020709
More Details
Authors: Li W, Thorne R M, Ma Q, Ni B, Bortnik J, et al.
Title: Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm
Abstract: Local acceleration driven by whistler-mode chorus waves is fundamentally important for accelerating seed electron populations to highly relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when the Van Allen Probes observed very rapid electron acceleration up to several MeV within ~12 hours. A clear radial peak in electron phase space density (PSD) observed near L* ~4 indicates that an internal local acceleration process was operating. We construct the global distribution of chorus wave intensity from the low-altitude electron measurements made by multiple Polar Orbiting Environmental Satellites (POES) satellites over a broad region, which is ultimately used to simulate the radiati. . .
Date: 06/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 4681 - 4693 DOI: 10.1002/jgra.v119.610.1002/2014JA019945 Available at: http://doi.wiley.com/10.1002/jgra.v119.6http://doi.wiley.com/10.1002/2014JA019945
More Details
Authors: Santolik O, Hospodarsky G B, Kurth W S, Averkamp T. F., Kletzing C A, et al.
Title: Statistical properties of wave vector directions of whistler-mode waves in the radiation belts based on measurements of the Van Allen probes and Cluster missions
Abstract: Wave-particle interactions in the Earth's Van Allen radiation belts are known to be an efficient process of the exchange of energy between different particle populations, including the energetic radiation belt particles. The whistler mode waves, especially chorus, can control the radiation belt dynamics via linear or nonlinear interactions with both the energetic radiation belt electrons and lower energy electron populations. Wave vector directions are a very important parameter of these wave-particle interactions. We use measurements of whistlermode waves by the WAVES instrument from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard the Van Allen Probes spacecraft covering the equatorial region of the Earth's magnetosphere in all MLT sectors, and a . . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929880 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929880
More Details
Authors: Menietti J. D., Averkamp T. F., Groene J. B., Horne R B, Shprits Y Y, et al.
Title: Survey analysis of chorus intensity at Saturn
Abstract: In order to conduct theoretical studies or modeling of pitch angle scattering of electrons by whistler mode chorus emission at Saturn, a knowledge of chorus occurrence and magnetic intensity levels, PB, as well as the distribution of PB relative to frequency and spatial parameters is essential. In this paper an extensive survey of whistler mode magnetic intensity levels at Saturn is carried out, and Gaussian fits of PB are performed. We fit the spectrum of wave magnetic intensity between the lower hybrid frequency and fceq/2 and for frequencies in the interval fceq/2 < f < 0.9 fceq, where fceq is the cyclotron frequency mapped to the equator. Saturn chorus is observed over most local times, but is dominant on the nightside in the range of 4.5 < L <7.5, with minimum power at t. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 8415 - 8425 DOI: 10.1002/jgra.v119.1010.1002/2014JA020523 Available at: http://doi.wiley.com/10.1002/jgra.v119.10http://doi.wiley.com/10.1002/2014JA020523
More Details
Authors: Ma Q, Li W, Chen L, Thorne R M, Kletzing C A, et al.
Title: The trapping of equatorial magnetosonic waves in the Earth's outer plasmasphere
Abstract: We investigate the excitation and propagation of equatorial magnetosonic waves observed by the Van Allen Probes and describe evidence for a trapping mechanism for magnetosonic waves in the Earth's plasmasphere. Intense equatorial magnetosonic waves were observed inside the plasmasphere in association with a pronounced proton ring distribution, which provides free energy for wave excitation. Instability analysis along the inbound orbit demonstrates that broadband magnetosonic waves can be excited over a localized spatial region near the plasmapause. The waves can subsequently propagate into the inner plasmasphere and remain trapped over a limited radial extent, consistent with the predictions of near-perpendicular propagation. By performing a similar analysis on another observed magnetosoni. . .
Date: 09/2014 Publisher: Geophysical Research Letters Pages: 6307 - 6313 DOI: 10.1002/2014GL061414 Available at: http://doi.wiley.com/10.1002/2014GL061414
More Details
Authors: Boardsen S. A., Hospodarsky G B, Kletzing C A, Pfaff R. F., Kurth W S, et al.
Title: Van Allen Probe Observations of Periodic Rising Frequencies of the Fast Magnetosonic Mode
Abstract: Near simultaneous periodic dispersive features of fast magnetosonic mode emissions are observed by both Van Allen Probes spacecraft while separated in magnetic local time by ~5 hours: Probe A at 15 and Probe B at 9–11 hours. Both spacecraft see similar frequency features, characterized by a periodic repetition at ~180 s. Each repetition is characterized by a rising frequency. Since no modulation is observed in the proton shell distribution, the plasma density, or in the background magnetic field at either spacecraft we conclude that these waves are not generated near the spacecraft but external to both spacecraft locations. Probe A while outside the plasmapause sees the start of each repetition ~40 s before probe B while deep inside the plasmasphere. We can qualitatively reproduce . . .
Date: 12/2014 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL062020 Available at: http://doi.wiley.com/10.1002/2014GL062020
More Details
2013
Authors: Li W, Ni B, Thorne R M, Bortnik J, Green J C, et al.
Title: Constructing the global distribution of chorus wave intensity using measurements of electrons by the POES satellites and waves by the Van Allen Probes
Abstract: We adopt a physics-based technique to infer chorus wave amplitudes from the low-altitude electron population (30–100 keV) measured by multiple Polar Orbiting Environmental Satellites (POES), which provide extensive coverage over a broad region in L-shell and magnetic local time (MLT). This technique is validated by analyzing conjunction events between the Van Allen Probes measuring chorus wave amplitudes near the equator and POES satellites measuring the 30–100 keV electron population at the conjugate low altitudes. We apply this technique to construct the chorus wave distributions during the 8–9 October storm in 2012 and demonstrate that the inferred chorus wave amplitudes agree reasonably well with conjugate measurements of chorus wave amplitudes from the Van Allen Probes. The . . .
Date: 09/2013 Publisher: Geophysical Research Letters Pages: 4526 - 4532 DOI: 10.1002/grl.v40.1710.1002/grl.50920 Available at: http://doi.wiley.com/10.1002/grl.v40.17http://doi.wiley.com/10.1002/grl.50920
More Details

Pages