Found 6 results
Filters: Author is K Takahashi  [Clear All Filters]
Authors: Ukhorskiy A Y, Sitnov M I, Mitchell D G, Takahashi K, Lanzerotti L J, et al.
Title: Rotationally driven ‘zebra stripes’ in Earth’s inner radiation belt
Abstract: Structured features on top of nominally smooth distributions of radiation-belt particles at Earth have been previously associated with particle acceleration and transport mechanisms powered exclusively by enhanced solar-wind activity1, 2, 3, 4. Although planetary rotation is considered to be important for particle acceleration at Jupiter and Saturn5, 6, 7, 8, 9, the electric field produced in the inner magnetosphere by Earth’s rotation can change the velocity of trapped particles by only about 1–2 kilometres per second, so rotation has been thought inconsequential for radiation-belt electrons with velocities of about 100,000 kilometres per second. Here we report that the distributions of energetic electrons across the entire spatial extent of Earth’s inner radiation belt are organize. . .
Date: 01/2014 Publisher: Nature Pages: 338 - 340 DOI: 10.1038/nature13046 Available at:
More Details
Authors: Dai L, Takahashi K, Wygant J R, Chen L, Bonnell J W, et al.
Title: Excitation of Poloidal standing Alfven waves through the drift resonance wave-particle interaction
Abstract: Drift-resonance wave-particle interaction is a fundamental collisionless plasma process studied extensively in theory. Using cross-spectral analysis of electric field, magnetic field, and ion flux data from the Van Allen Probe (Radiation Belt Storm Probes) spacecraft, we present direct evidence identifying the generation of a fundamental mode standing poloidal wave through drift-resonance interactions in the inner magnetosphere. Intense azimuthal electric field (Eφ) oscillations as large as 10mV/m are observed, associated with radial magnetic field (Br) oscillations in the dawn-noon sector near but south of the magnetic equator at L∼5. The observed wave period, Eφ/Br ratio and the 90° phase lag between Br and Eφ are all consistent with fundamental mode standing Poloidal waves. Phase . . .
Date: 08/2013 Publisher: Geophysical Research Letters DOI: 10.1002/grl.50800 Available at:
More Details
Authors: Claudepierre S G, Mann I R, Takahashi K, Fennell J F, Hudson M K, et al.
Title: Van Allen Probes observation of localized drift-resonance between poloidal mode ultra-low frequency waves and 60 keV electrons
Abstract: [1] We present NASA Van Allen Probes observations of wave-particle interactions between magnetospheric ultra-low frequency (ULF) waves and energetic electrons (20–500 keV) on 31 October 2012. The ULF waves are identified as the fundamental poloidal mode oscillation and are excited following an interplanetary shock impact on the magnetosphere. Large amplitude modulations in energetic electron flux are observed at the same period (≈ 3 min) as the ULF waves and are consistent with a drift-resonant interaction. The azimuthal mode number of the interacting wave is estimated from the electron measurements to be ~40, based on an assumed symmetric drift resonance. The drift-resonant interaction is observed to be localized and occur over 5–6 wave cycles, demonstrating peak electron flux modul. . .
Date: 09/2013 Publisher: Geophysical Research Letters Pages: 4491–4497 DOI: 10.1002/grl.50901 Available at:
More Details
Authors: Elkington Scot R, Takahashi K, Chi Peter J, Denton Richard E, and Lysak Robert L
Title: A review of ULF interactions with radiation belt electrons
Abstract: Energetic particle fluxes in the outer zone radiation belts can vary over orders of magnitude on a variety of timescales. Power at ULF frequencies, on the order of a few millihertz, have been associated with changes in flux levels among relativis- tic electrons comprising the outer zone of the radiation belts. Power in this part of the spectrum may occur as a result of a number of processes, including internally- generated waves induced by plasma instabilities, and externally generated processes such as shear instabilities at the flanks or compressive variations in the solar wind. Changes in the large-scale convective motion of the magnetosphere are another important class of externally driven variations with power at ULF wavelengths. The mechanism for interaction between ULF vari. . .
Date: Publisher: American Geophysical Union Pages: 177 - 193 DOI: 10.1029/169GM12 Available at:
More Details
Authors: Ukhorskiy A Y, Takahashi K, Anderson B. J., and Korth H.
Title: Impact of toroidal ULF waves on the outer radiation belt electrons
Abstract: Relativistic electron fluxes in the outer radiation belt exhibit highly variable complex behavior. Previous studies have established a strong correlation of electron fluxes and the inner magnetospheric ULF waves in the Pc 3–5 frequency range. Resonant interaction of ULF waves with the drift motion of radiation belt electrons violates their third adiabatic invariant and consequently leads to their radial transport. If the wave-particle interaction has a stochastic character, then the electron transport is diffusive. The goal of this paper is to analyze the impact of toroidal ULF waves on radiation belt electrons. The study is based on direct measurements of ULF electric fields on the CRRES spacecraft. We show that the electric fields of inner magnetospheric toroidal ULF waves exhibit high. . .
Date: 10/2005 Publisher: Journal of Geophysical Research DOI: 10.1029/2005JA011017 Available at:
More Details
Authors: Ingraham J C, Cayton T E, Belian R D, Christensen R A, Friedel R H W, et al.
Title: Substorm injection of relativistic electrons to geosynchronous orbit during the great magnetic storm of March 24, 1991
Abstract: The great March 1991 magnetic storm and the immediately preceding solar energetic particle event (SEP) were among the largest observed during the past solar cycle, and have been the object of intense study. We investigate here, using data from eight satellites, the very large delayed buildup of relativistic electron flux in the outer zone during a 1.5-day period beginning 2 days after onset of the main phase of this storm. A notable feature of the March storm is the intense substorm activity throughout the period of the relativistic flux buildup, and the good correlation between some temporal features of the lower-energy substorm-injected electron flux and the relativistic electron flux at geosynchronous orbit. Velocity dispersion analysis of these fluxes between geosynchronous satellites . . .
Date: 11/2001 Publisher: Journal of Geophysical Research Pages: 25759 - 25776 DOI: 10.1029/2000JA000458 Available at:
More Details