Biblio

Found 30 results
Filters: Author is Artemyev, A. V.  [Clear All Filters]
2019
Authors: Pinto V. A., Mourenas D., Bortnik J, Zhang X.‐J., Artemyev A. V., et al.
Title: Decay of Ultrarelativistic Remnant Belt Electrons Through Scattering by Plasmaspheric Hiss
Abstract: Ultrarelativistic electron remnant belts appear frequently following geomagnetic disturbances and are located in‐between the inner radiation belt and a reforming outer belt. As remnant belts are relatively stable, here we explore the importance of hiss and electromagnetic ion cyclotron waves in controlling the observed decay rates of remnant belt ultrarelativistic electrons in a statistical way. Using measurements from the Van Allen Probes inside the plasmasphere for 25 remnant belt events that occurred between 2012 and 2017 and that are located in the region 2.9Date: Dec-07-2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026509 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026509
More Details
Authors: Zhang X.‐J., Mourenas D., Artemyev A. V., Angelopoulos V, Bortnik J, et al.
Title: Nonlinear Electron Interaction With Intense Chorus Waves: Statistics of Occurrence Rates
Abstract: A comprehensive statistical analysis on 8 years of lower‐band chorus wave packets measured by the Van Allen Probes and THEMIS spacecraft is performed to examine whether, when, and where these waves are above the theoretical threshold for nonlinear resonant wave‐particle interaction. We find that ∼5–30% of all chorus waves interact nonlinearly with ∼30‐ to 300‐keV electrons possessing equatorial pitch angles of >40° in the outer radiation belt, especially during disturbed (AE>500 nT) periods with energetic particles associated with injections from the plasma sheet. Such considerable occurrence rates of nonlinear interactions imply that the evolution of energetic electron fluxes should be dominated by nonlinear effects, rather than by quasi‐linear diffusion as commonly assum. . .
Date: 06/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083833 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083833
More Details
2018
Authors: Zhang X.-J., Mourenas D., Artemyev A. V., Angelopoulos V, and Thorne R M
Title: Electron flux enhancements at L  = 4.2 observed by Global Positioning System satellites: Relationship with solar wind and geomagnetic activity
Abstract: Determining solar wind and geomagnetic activity parameters most favorable to strong electron flux enhancements is an important step towards forecasting radiation belt dynamics. Using electron flux measurements from Global Positioning System satellites at L = 4.2 in 2009‐2016, we seek statistical relationships between flux enhancements at different energies and solar wind dynamic pressure Pdyn, AE, and Kp, from hundreds of events inside and outside the plasmasphere. Most ⩾1 MeV electron flux enhancements occur during non‐storm (or weak storm) times. Flux enhancements of 4 MeV electrons outside the plasmasphere occur during periods of low Pdyn and high AE. We perform superposed epoch analyses of GPS electron fluxes, along with solar wind and geomagnetic indices, 40 keV electron flu. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025497 Available at: http://doi.wiley.com/10.1029/2018JA025497http://onlinelibrary.wiley.com/wol1/doi/10.1029/2018JA025497/fullpdfhttps://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1029%2F2018JA025497
More Details
Authors: Mourenas D., Zhang X.-J., Artemyev A. V., Angelopoulos V, Thorne R M, et al.
Title: Electron nonlinear resonant interaction with short and intense parallel chorus wave-packets
Abstract: One of the major drivers of radiation belt dynamics, electron resonant interaction with whistler‐mode chorus waves, is traditionally described using the quasi‐linear diffusion approximation. Such a description satisfactorily explains many observed phenomena, but its applicability can be justified only for sufficiently low intensity, long duration waves. Recent spacecraft observations of a large number of very intense lower band chorus waves (with magnetic field amplitudes sometimes reaching ∼1% of the background) therefore challenge this traditional description, and call for an alternative approach when addressing the global, long‐term effects of the nonlinear interaction of these waves with radiation belt electrons. In this paper, we first use observations from the Van Allen Probe. . .
Date: 05/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025417 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025417
More Details
Authors: Vainchtein D., Zhang X.-J., Artemyev A. V., Mourenas D., Angelopoulos V, et al.
Title: Evolution of electron distribution driven by nonlinear resonances with intense field-aligned chorus waves
Abstract: Resonant electron interaction with whistler‐mode chorus waves is recognized as one of the main drivers of radiation belt dynamics. For moderate wave intensity, this interaction is well described by quasi‐linear theory. However, recent statistics of parallel propagating chorus waves have demonstrated that 5 − 20% of the observed waves are sufficiently intense to interact nonlinearly with electrons. Such interactions include phase trapping and phase bunching (nonlinear scattering) effects not described by quasi‐linear diffusion. For sufficiently long (large) wave‐packets, these nonlinear effects can result in very rapid electron acceleration and scattering. In this paper we introduce a method to include trapping and nonlinear scattering into the kinetic equation describing the . . .
Date: 09/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025654 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025654
More Details
Authors: Artemyev A. V., Zhang X.-J., Angelopoulos V, Runov A., Spence H E, et al.
Title: Plasma anisotropies and currents in the near-Earth plasma sheet and inner magnetosphere
Abstract: The region occupying radial distances of ∼3 − 9 Earth radii (RE) in the night side, includes the near‐Earth plasma sheet with stretched magnetic field lines and the inner magnetosphere with strong dipolar magnetic field. In this region, the plasma flow energy, which was injected into the inner magnetosphere from the magnetotail, is converted to particle heating and electromagnetic wave generation. These important processes are controlled by plasma anisotropies, which are the focus of this study. Using measurements of THEMIS and Van Allen Probes in this transition region we obtain radial profiles of ion and electron temperatures and anisotropies for various geomagnetic activity levels. Ion and electron anisotropies vary with the geomagnetic activity in opposite directions. Paralle. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025232 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025232
More Details
2017
Authors: Zhang X.-J., Mourenas D., Artemyev A. V., Angelopoulos V, and Thorne R M
Title: Contemporaneous EMIC and Whistler-Mode Waves: Observations and Consequences for MeV Electron Loss
Abstract: The high variability of relativistic (MeV) electron fluxes in the Earth's radiation belts is partly controlled by loss processes involving resonant interactions with electromagnetic ion cyclotron (EMIC) and whistler-mode waves. But as previous statistical models were generated independently for each wave mode, whether simultaneous electron scattering by the two wave types has global importance remains an open question. Using >3 years of simultaneous Van Allen Probes and THEMIS measurements, we explore the contemporaneous presence of EMIC and whistler-mode waves in the same L-shell, albeit at different local times, determining the distribution of wave and plasma parameters as a function of L, Kp, and AE. We derive electron lifetimes from observations and provide the first statistics of comb. . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL073886 Available at: onlinelibrary.wiley.com/doi/10.1002/2017GL073886/full
More Details
Authors: Vasko I. Y., Agapitov O. V., Mozer F S, Artemyev A. V., Krasnoselskikh V. V., et al.
Title: Diffusive scattering of electrons by electron holes around injection fronts
Abstract: Van Allen Probes have detected nonlinear electrostatic spikes around injection fronts in the outer radiation belt. These spikes include electron holes (EH), double layers, and more complicated solitary waves. We show that EHs can efficiently scatter electrons due to their substantial transverse electric fields. Although the electron scattering driven by EHs is diffusive, it cannot be evaluated via the standard quasi-linear theory. We derive analytical formulas describing local electron scattering by a single EH and verify them via test particle simulations. We show that the most efficiently scattered are gyroresonant electrons (crossing EH on a time scale comparable to the local electron gyroperiod). We compute bounce-averaged diffusion coefficients and demonstrate their dependence on the . . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023337 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023337/full
More Details
Authors: Vasko I. Y., Agapitov O. V., Mozer F S, Bonnell J. W., Artemyev A. V., et al.
Title: Electron-acoustic solitons and double layers in the inner magnetosphere
Abstract: The Van Allen Probes observe generally two types of electrostatic solitary waves (ESW) contributing to the broadband electrostatic wave activity in the nightside inner magnetosphere. ESW with symmetric bipolar parallel electric field are electron phase space holes. The nature of ESW with asymmetric bipolar (and almost unipolar) parallel electric field has remained puzzling. To address their nature, we consider a particular event observed by Van Allen Probes to argue that during the broadband wave activity electrons with energy above 200 eV provide the dominant contribution to the total electron density, while the density of cold electrons (below a few eV) is less than a few tenths of the total electron density. We show that velocities of the asymmetric ESW are close to velocity of electron. . .
Date: 05/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074026 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL074026/full
More Details
Authors: Agapitov O. V., Mourenas D., Artemyev A. V., Mozer F S, Hospodarsky G., et al.
Title: Synthetic empirical chorus wave model from combined Van Allen Probes and Cluster statistics
Abstract: Chorus waves are among the most important natural electromagnetic emissions in the magnetosphere as regards their potential effects on electron dynamics. They can efficiently accelerate or precipitate electrons trapped in the outer radiation belt, producing either fast increases of relativistic particle fluxes, or auroras at high latitudes. Accurately modeling their effects, however, requires detailed models of their wave power and obliquity distribution as a function of geomagnetic activity in a particularly wide spatial domain, rarely available based solely on the statistics obtained from only one satellite mission. Here, we seize the opportunity of synthesizing data from the Van Allen Probes and Cluster spacecraft to provide a new comprehensive chorus wave model in the outer radiation b. . .
Date: 12/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024843 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024843/full
More Details
Authors: Ma Q, Artemyev A. V., Mourenas D., Li W, Thorne R M, et al.
Title: Very Oblique Whistler Mode Propagation in the Radiation Belts: Effects of Hot Plasma and Landau Damping
Abstract: Satellite observations of a significant population of very oblique chorus waves in the outer radiation belt have fueled considerable interest in the effects of these waves on energetic electron scattering and acceleration. However, corresponding diffusion rates are extremely sensitive to the refractive index N, controlled by hot plasma effects including Landau damping and wave dispersion modifications by suprathermal (15–100 eV) electrons. A combined investigation of wave and electron distribution characteristics obtained from the Van Allen Probes shows that peculiarities of the measured electron distribution significantly reduce Landau damping, allowing wave propagation with high N ∼ 100–200. Further comparing measured refractive indexes with theoretical estimates incorporating hot . . .
Date: 12/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL075892 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL075892/full
More Details
2016
Authors: Vasko I. Y., Agapitov O. V., Mozer F S, Artemyev A. V., Drake J. F., et al.
Title: Electron holes in the outer radiation belt: Characteristics and their role in electron energization
Abstract: Van Allen Probes have detected electron holes (EHs) around injection fronts in the outer radiation belt. Presumably generated near equator, EHs propagate to higher latitudes potentially resulting in energization of electrons trapped within EHs. This process has been recently shown to provide electrons with energies up to several tens of keV and requires EH propagation up to rather high latitudes. We have analyzed more than 100 EHs observed around a particular injection to determine their kinetic structure and potential energy sources supporting the energization of trapped electrons. EHs propagate with velocities from 1000 to 20,000 km/s (a few times larger than the thermal velocity of the coldest background electron population). The parallel scale of observed EHs is from 0.3 to 3 km that i. . .
Date: 12/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023083 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023083/full
More Details
Authors: Turner D. L., Fennell J. F., Blake J B, Clemmons J. H., Mauk B H, et al.
Title: Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission
Abstract: We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA's Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at ~7–9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the threshold are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increa. . .
Date: 08/2016 Publisher: Geophysical Research Letters Pages: 7785 - 7794 DOI: 10.1002/2016GL069691 Available at: http://doi.wiley.com/10.1002/2016GL069691
More Details
Authors: Li W, Mourenas D., Artemyev A. V., Bortnik J, Thorne R M, et al.
Title: Unraveling the excitation mechanisms of highly oblique lower band chorus waves
Abstract: Excitation mechanisms of highly oblique, quasi-electrostatic lower band chorus waves are investigated using Van Allen Probes observations near the equator of the Earth's magnetosphere. Linear growth rates are evaluated based on in situ, measured electron velocity distributions and plasma conditions and compared with simultaneously observed wave frequency spectra and wave normal angles. Accordingly, two distinct excitation mechanisms of highly oblique lower band chorus have been clearly identified for the first time. The first mechanism relies on cyclotron resonance with electrons possessing both a realistic temperature anisotropy at keV energies and a plateau at 100–500 eV in the parallel velocity distribution. The second mechanism corresponds to Landau resonance with a 100–500 eV . . .
Date: 09/2016 Publisher: Geophysical Research Letters Pages: 8867 - 8875 DOI: 10.1002/grl.v43.1710.1002/2016GL070386 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL070386/abstract
More Details
2015
Authors: Mourenas D., Artemyev A. V., and Agapitov O.V.
Title: Approximate analytical formulation of radial diffusion and whistler-induced losses from a pre-existing flux peak in the plasmasphere
Abstract: Modeling the spatio-temporal evolution of relativistic electron fluxes trapped in the Earth's radiation belts in the presence of radial diffusion coupled with wave-induced losses should address one important question: how deep can relativistic electrons penetrate into the inner magnetosphere? However, a full modelling requires extensive numerical simulations solving the comprehensive quasi-linear equations describing pitch-angle and radial diffusion of the electron distribution, making it rather difficult to perform parametric studies of the flux behavior. Here, we consider the particular situation where a localized flux peak (or storage ring) has been produced at low L < 4 during a period of strong disturbances, through a combination of chorus-induced energy diffusion (or direct injection. . .
Date: 08/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021623 Available at: http://doi.wiley.com/10.1002/2015JA021623
More Details
Authors: Artemyev A. V., Agapitov O. V., Mozer F S, and Spence H.
Title: Butterfly pitch-angle distribution of relativistic electrons in the outer radiation belt: Evidence of nonadiabatic scattering
Abstract: In this paper we investigate the scattering of relativistic electrons in the night-side outer radiation belt (around the geostationary orbit). We consider the particular case of low geomagnetic activity (|Dst|< 20 nT), quiet conditions in the solar wind, and absence of whistler wave emissions. For such conditions we find several events of Van-Allen probe observations of butterfly pitch-angle distributions of relativistic electrons (energies about 1-3 MeV). Many previous publications have described such pitch-angle distributions over a wide energy range as due to the combined effect of outward radial diffusion and magnetopause shadowing. In this paper we discuss another mechanism that produces butterfly distributions over a limited range of electron energies. We suggest that such distributi. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020865 Available at: http://doi.wiley.com/10.1002/2014JA020865
More Details
Authors: Agapitov O. V., Artemyev A. V., Mourenas D., Mozer F S, and Krasnoselskikh V.
Title: Empirical model of lower band chorus wave distribution in the outer radiation belt
Abstract: Accurate modeling of wave-particle interactions in the radiation belts requires detailed information on wave amplitudes and wave-normal angular distributions over L shells, magnetic latitudes, magnetic local times, and for various geomagnetic activity conditions. In this work, we develop a new and comprehensive parametric model of VLF chorus waves amplitudes and obliqueness in the outer radiation belt using statistics of VLF measurements performed in the chorus frequency range during 10 years (2001–2010) aboard the Cluster spacecraft. We used data from the Spatio-Temporal Analysis of Field Fluctuations-Spectrum Analyzer experiment, which spans a total frequency range from 8 Hz to 4 kHz. The statistical model is presented in the form of an analytical function of latitude and Kp (or Dst) i. . .
Date: 12/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021829 Available at: http://doi.wiley.com/10.1002/2015JA021829http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021829
More Details
Authors: Agapitov O. V., Krasnoselskikh V., Mozer F S, Artemyev A. V., and Volokitin A. S.
Title: Generation of nonlinear Electric Field Bursts in the outer radiation belt through the parametric decay of whistler waves
Abstract: Huge numbers of different non-linear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on the Van Allen Probes. Some of them are associated with whistler waves. Such TDS often emerge on the forward edges of the whistler wave packets and form chains. The parametric decay of a whistler wave into a whistler wave propagating in the opposite direction and an electron acoustic wave is studied experimentally as well as analytically, using Van Allen Probes data. The resulting electron acoustic wave is considered to be the source of electron scale TDS. The measured parameters of the three waves (two whistlers and the electron acoustic wave) are in a good agreement with an assumption . . .
Date: 05/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064145 Available at: http://doi.wiley.com/10.1002/2015GL064145
More Details
Authors: Vasko I. Y., Agapitov O. V., Mozer F, Artemyev A. V., and Jovanovic D.
Title: Magnetic field depression within electron holes
Abstract: We analyze electron holes that are spikes of the electrostatic field (up to 500 mV/m) observed by Van Allen Probes in the outer radiation belt. The unexpected feature is the magnetic field depression of about several tens of picotesla within many of the spikes. The earlier observations showed amplification or negligible perturbations of the magnetic field within the electron holes. We suggest that the observed magnetic field depression is due to the diamagnetic current of hot and highly anisotropic population of electrons trapped within the electron holes. The required trapped population should have a density up to 65% of the background plasma density, a temperature up to several keV, and a temperature anisotropy T⊥/T∥∼2. We argue that the observed electron holes could be generated. . .
Date: 04/2015 Publisher: Geophysical Research Letters Pages: 2123 - 2129 DOI: 10.1002/2015GL063370 Available at: http://doi.wiley.com/10.1002/2015GL063370
More Details
Authors: Agapitov O. V., Artemyev A. V., Mourenas D., Mozer F S, and Krasnoselskikh V.
Title: Nonlinear local parallel acceleration of electrons through Landau trapping by oblique whistler mode waves in the outer radiation belt
Abstract: Simultaneous observations of electron velocity distributions and chorus waves by the Van Allen Probe B are analyzed to identify long-lasting (more than 6 h) signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. Such Landau resonant interactions result in the trapping of ∼1–10 keV electrons and their acceleration up to 100–300 keV. This kind of process becomes important for oblique whistler mode waves having a significant electric field component along the background magnetic field. In the inhomogeneous geomagnetic field, such resonant interactions then lead to the formation of a plateau in the parallel (with respect to the geomagnetic field) velocity distribution due to trapping of electrons into the wave effective potential. We de. . .
Date: 12/2015 Publisher: Geophysical Research Letters Pages: 10,140 - 10,149 DOI: 10.1002/2015GL066887 Available at: http://doi.wiley.com/10.1002/2015GL066887http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015GL066887
More Details
Authors: Artemyev A. V., Mourenas D., Agapitov O. V., and Krasnoselskikh V. V.
Title: Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes
Abstract: In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles theta (i.e., when the dispersion delta theta >= 0.5 degrees), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for delta theta > 0.5 degrees, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narr. . .
Date: 06/2015 Publisher: Physics of Plasmas Pages: 062901 DOI: 10.1063/1.4922061 Available at: http://scitation.aip.org/content/aip/journal/pop/22/6/10.1063/1.4922061
More Details
Authors: Artemyev A. V., Mourenas D., Agapitov O. V., Vainchtein D. L., Mozer F S, et al.
Title: Stability of relativistic electron trapping by strong whistler or electromagnetic ion cyclotron waves
Abstract: In the present paper, we investigate the trapping of relativistic electrons by intense whistler-mode waves or electromagnetic ion cyclotron waves in the Earth's radiation belts. We consider the non-resonant impact of additional, lower amplitude magnetic field fluctuations on the stability of electron trapping. We show that such additional non-resonant fluctuations can break the adiabatic invariant corresponding to trapped electron oscillations in the effective wave potential. This destruction results in a diffusive escape of electrons from the trapped regime of motion and thus can lead to a significant reduction of the efficiency of electron acceleration. We demonstrate that when energetic electrons are trapped by intense parallel or very oblique whistler-mode waves, non-resonant magnetic . . .
Date: 08/2015 Publisher: Physics of Plasmas Pages: 082901 DOI: 10.1063/1.4927774 Available at: http://scitation.aip.org/content/aip/journal/pop/22/8/10.1063/1.4927774
More Details
Authors: Vasko I. Y., Agapitov O. V., Mozer F S, and Artemyev A. V.
Title: Thermal electron acceleration by electric field spikes in the outer radiation belt: Generation of field-aligned pitch angle distributions
Abstract: Van Allen Probes observations in the outer radiation belt have demonstrated an abundance of electrostatic electron-acoustic double layers (DL). DLs are frequently accompanied by field-aligned (bidirectional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV. We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e., due to reflections from DL potential humps. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi me. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021644 Available at: http://doi.wiley.com/10.1002/2015JA021644http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021644
More Details
Authors: Mourenas D., Artemyev A. V., Agapitov O. V., Krasnoselskikh V., and Mozer F.S.
Title: Very Oblique Whistler Generation By Low Energy Electron Streams
Abstract: Whistler-mode chorus waves are present throughout the Earth's outer radiation belt as well as at larger distances from our planet. While the generation mechanisms of parallel lower-band chorus waves and oblique upper-band chorus waves have been identified and checked in various instances, the statistically significant presence in recent satellite observations of very oblique lower-band chorus waves near the resonance cone angle remains to be explained. Here we discuss two possible generation mechanisms for such waves. The first one is based on Landau resonance with sporadic very low energy (<4 keV) electron beams either injected from the plasmasheet or produced in situ. The second one relies on cyclotron resonance with low energy electron streams, such that their velocity distribution poss. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021135 Available at: http://doi.wiley.com/10.1002/2015JA021135
More Details
2014
Authors: Mourenas D., Artemyev A. V., Agapitov O.V., Krasnoselskikh V., and Li W
Title: Approximate analytical solutions for the trapped electron distribution due to quasi-linear diffusion by whistler-mode waves
Abstract: The distribution of trapped energetic electrons inside the Earth's radiation belts is the focus of intense studies aiming at better describing the evolution of the space environment in the presence of various disturbances induced by the solar wind or by an enhanced lightning activity. Such studies are usually performed by means of comparisons with full numerical simulations solving the Fokker-Planck quasi-linear diffusion equation for the particle distribution function. Here, we present for the first time approximate but realistic analytical solutions for the electron distribution, which are shown to be in good agreement with exact numerical solutions in situations where resonant scattering of energetic electrons by whistler-mode hiss, lightning-generated or chorus waves, is the dominant p. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020443 Available at: http://doi.wiley.com/10.1002/2014JA020443
More Details
Authors: Artemyev A. V., Vasiliev A. A., Mourenas D., Agapitov O. V., Krasnoselskikh V., et al.
Title: Fast transport of resonant electrons in phase space due to nonlinear trapping by whistler waves
Abstract: We present an analytical, simplified formulation accounting for the fast transport of relativistic electrons in phase space due to wave-particle resonant interactions in the inhomogeneous magnetic field of Earth's radiation belts. We show that the usual description of the evolution of the particle velocity distribution based on the Fokker-Planck equation can be modified to incorporate nonlinear processes of wave-particle interaction, including particle trapping. Such a modification consists in one additional operator describing fast particle jumps in phase space. The proposed, general approach is used to describe the acceleration of relativistic electrons by oblique whistler waves in the radiation belts. We demonstrate that for a wave power distribution with a hard enough power law tail in. . .
Date: 08/2014 Publisher: Geophysical Research Letters Pages: 5727 - 5733 DOI: 10.1002/grl.v41.1610.1002/2014GL061380 Available at: http://doi.wiley.com/10.1002/grl.v41.16http://doi.wiley.com/10.1002/2014GL061380
More Details
Authors: Agapitov O. V., Artemyev A. V., Mourenas D., Kasahara Y., and Krasnoselskikh V.
Title: Inner belt and slot region electron lifetimes and energization rates based on AKEBONO statistics of whistler waves
Abstract: Global statistics of the amplitude distributions of hiss, lightning-generated, and other whistler mode waves from terrestrial VLF transmitters have been obtained from the EXOS-D (Akebono) satellite in the Earth's plasmasphere and fitted as functions of L and latitude for two geomagnetic activity ranges (Kp<3 and Kp>3). In particular, the present study focuses on the inner zone L∈[1.4,2] where reliable in situ measurements were lacking. Such statistics are critically needed for an accurate assessment of the role and relative dominance of each type of wave in the dynamics of the inner radiation belt. While VLF waves seem to propagate mainly in a ducted mode at L∼1.5–3 for Kp<3, they appear to be substantially unducted during more disturbed periods (Kp>3). Hiss waves are generally the m. . .
Date: 04/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 2876 - 2893 DOI: 10.1002/jgra.v119.410.1002/2014JA019886 Available at: http://doi.wiley.com/10.1002/jgra.v119.4http://doi.wiley.com/10.1002/2014JA019886
More Details
Authors: Artemyev A. V., Agapitov O. V., Mozer F, and Krasnoselskikh V.
Title: Thermal electron acceleration by localized bursts of electric field in the radiation belts
Abstract: In this paper we investigate the resonant interaction of thermal ~10−100 eV electrons with a burst of electrostatic field that results in electron acceleration to kilovolt energies. This single burst contains a large parallel electric field of one sign and a much smaller, longer lasting parallel field of the opposite sign. The Van Allen Probe spacecraft often observes clusters of spatially localized bursts in the Earth's outer radiation belts. These structures propagate mostly away from thegeomagnetic equator and share properties of soliton-like nonlinear electron-acoustic waves: a velocity of propagation is about the thermal velocity of cold electrons (~3000−10000 km/s), and a spatial scale of electric field localization alongthe field lines is about the Debye radius of hot electrons . . .
Date: 08/2014 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL061248 Available at: http://doi.wiley.com/10.1002/2014GL061248
More Details
2013
Authors: Ukhorskiy A Y, Sitnov M I, Merkin V. G., and Artemyev A. V.
Title: Rapid acceleration of protons upstream of earthward propagating dipolarization fronts
Abstract: [1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz. We then use three-dimensional test-particle simulations to investigate how these acceleration processe. . .
Date: 01/2013 Publisher: Journal of Geophysical Research: Space Physics Pages: 4952–4962, DOI: 10.1002/jgra.50452 Available at: http://doi.wiley.com/10.1002/jgra.50452
More Details
Authors: Artemyev A. V., Agapitov O. V., Mourenas D., Krasnoselskikh V., and Zelenyi L. M.
Title: Storm-induced energization of radiation belt electrons: Effect of wave obliquity
Abstract: New Cluster statistics allow us to determine for the first time the variations of both the obliquity and intensity of lower-band chorus waves as functions of latitude and geomagnetic activity near L∼5. The portion of wave power in very oblique waves decreases during highly disturbed periods, consistent with increased Landau damping by inward-penetrating suprathermal electrons. Simple analytical considerations as well as full numerical calculations of quasi-linear diffusion rates demonstrate that early-time electron acceleration occurs in a regime of loss-limited energization. In this regime, the average wave obliquity plays a critical role in mitigating lifetime reduction as wave intensity increases with geomagnetic activity, suggesting that much larger energization levels should be reac. . .
Date: 08/2013 Publisher: Geophysical Research Letters Pages: 4138 - 4143 DOI: 10.1002/grl.50837 Available at: http://doi.wiley.com/10.1002/grl.50837
More Details