Biblio

Found 19 results
Filters: Author is Elkington, Scot R.  [Clear All Filters]
2018
Authors: Jaynes A. N., Ali A. F., Elkington S R, Malaspina D. M., Baker D N, et al.
Title: Fast diffusion of ultra-relativistic electrons in the outer radiation belt: 17 March 2015 storm event
Abstract: Inward radial diffusion driven by ULF waves has long been known to be capable of accelerating radiation belt electrons to very high energies within the heart of the belts, but more recent work has shown that radial diffusion values can be highly event‐specific and mean values or empirical models may not capture the full significance of radial diffusion to acceleration events. Here we present an event of fast inward radial diffusion, occurring during a period following the geomagnetic storm of 17 March 2015. Ultra‐relativistic electrons up to ∼8 MeV are accelerated in the absence of intense higher‐frequency plasma waves, indicating an acceleration event in the core of the outer belt driven primarily or entirely by ULF wave‐driven diffusion. We examine this fast diffusion rate alon. . .
Date: 09/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL079786 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL079786
More Details
2016
Authors: Ali Ashar F., Malaspina David M., Elkington Scot R, Jaynes Allison N., Chan Anthony A, et al.
Title: Electric and Magnetic Radial Diffusion Coefficients Using the Van Allen Probes Data
Abstract: ULF waves are a common occurrence in the inner magnetosphere and they contribute to particle motion, significantly, at times. We used the magnetic and the electric field data from the EMFISIS and the EFW instruments on board the Van Allen Probes to estimate the ULF wave power in the compressional component of the magnetic field and the azimuthal component of the electric field, respectively. Using L∗, Kp, and MLT as parameters, we conclude that the noon sector contains higher ULF Pc-5 wave power compared with the other MLT sectors. The dawn, dusk, and midnight sectors have no statistically significant difference between them. The drift-averaged power spectral densities are used to derive the magnetic and the electric component of the radial diffusion coefficient. Both components exhibit . . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023002 Available at: http://doi.wiley.com/10.1002/2016JA023002
More Details
2015
Authors: Malaspina David M., Claudepierre Seth G., Takahashi Kazue, Jaynes Allison N., Elkington Scot R, et al.
Title: Kinetic Alfvén Waves and Particle Response Associated with a Shock-Induced, Global ULF Perturbation of the Terrestrial Magnetosphere
Abstract: On 2 October 2013, the arrival of an interplanetary shock compressed the Earth's magnetosphere and triggered a global ULF (ultra low frequency) oscillation. The Van Allen Probe B spacecraft observed this large-amplitude ULF wave in situ with both magnetic and electric field data. Broadband waves up to approximately 100 Hz were observed in conjunction with, and modulated by, this ULF wave. Detailed analysis of fields and particle data reveals that these broadband waves are Doppler-shifted kinetic Alfvén waves. This event suggests that magnetospheric compression by interplanetary shocks can induce abrupt generation of kinetic Alfvén waves over large portions of the inner magnetosphere, potentially driving previously unconsidered wave-particle interactions throughout the inner magnetosphere. . .
Date: 11/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL065935 Available at: http://doi.wiley.com/10.1002/2015GL065935http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015GL065935
More Details
Authors: Ali Ashar F., Elkington Scot R, Tu Weichao, Ozeke Louis G., Chan Anthony A, et al.
Title: Magnetic field power spectra and magnetic radial diffusion coefficients using CRRES magnetometer data
Abstract: We used the fluxgate magnetometer data from Combined Release and Radiation Effects Satellite (CRRES) to estimate the power spectral density (PSD) of the compressional component of the geomagnetic field in the ∼1 mHz to ∼8 mHz range. We conclude that magnetic wave power is generally higher in the noon sector for quiet times with no significant difference between the dawn, dusk, and the midnight sectors. However, during high Kp activity, the noon sector is not necessarily dominant anymore. The magnetic PSDs have a very distinct dependence on Kp. In addition, the PSDs appear to have a weak dependence on McIlwain parameter L with power slightly increasing as L increases. The magnetic wave PSDs are used along with the Fei et al. (2006) formulation to compute inline image as a function of L . . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020419 Available at: http://doi.wiley.com/10.1002/2014JA020419
More Details
Authors: Kanekal S G, Baker D N, Henderson M G, Li W, Fennell J. F., et al.
Title: Relativistic electron response to the combined magnetospheric impact of a coronal mass ejection overlapping with a high-speed stream: Van Allen Probes observations
Abstract: During early November 2013, the magnetosphere experienced concurrent driving by a coronal mass ejection (CME) during an ongoing high-speed stream (HSS) event. The relativistic electron response to these two kinds of drivers, i.e., HSS and CME, is typically different, with the former often leading to a slower buildup of electrons at larger radial distances, while the latter energizing electrons rapidly with flux enhancements occurring closer to the Earth.We present a detailed analysis of the relativistic electron response including radial profiles of phase space density as observed by both MagEIS and REPT instruments on the Van Allen Probes mission. Data from the MagEIS instrument establishes the behavior of lower energy (<1MeV) electrons which span both intermediary and seed populations du. . .
Date: 09/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021395 Available at: http://doi.wiley.com/10.1002/2015JA021395
More Details
2014
Authors: Zheng Liheng, Chan Anthony A, Albert Jay M, Elkington Scot R, Koller Josef, et al.
Title: Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates
Abstract: A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Itô stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle α0=90° is also derived. The model is applied to a simulation of the October 2002 storm event. At α0 near 90°, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at sm. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 7615 - 7635 DOI: 10.1002/jgra.v119.910.1002/2014JA020127 Available at: http://doi.wiley.com/10.1002/jgra.v119.9http://doi.wiley.com/10.1002/2014JA020127
More Details
2013
Authors: Baker D N, Kanekal S G, Hoxie V C, Henderson M G, Li X, et al.
Title: A Long-Lived Relativistic Electron Storage Ring Embedded in Earth's Outer Van Allen Belt
Abstract: Since their discovery more than 50 years ago, Earth’s Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (>2 MeV) electrons that formed on 2 September 2012 and persisted largely unc. . .
Date: 04/2013 Publisher: Science Pages: 186-190 DOI: 10.1126/science.1233518 Available at: http://www.sciencemag.org/content/340/6129/186
More Details
Authors: Baker D N, Kanekal S G, Hoxie V C, Batiste S, Bolton M, et al.
Title: The Relativistic Electron-Proton Telescope (REPT) Instrument on Board the Radiation Belt Storm Probes (RBSP) Spacecraft: Characterization of Earth’s Radiation Belt High-Energy Particle Populations
Abstract: Particle acceleration and loss in the million electron Volt (MeV) energy range (and above) is the least understood aspect of radiation belt science. In order to measure cleanly and separately both the energetic electron and energetic proton components, there is a need for a carefully designed detector system. The Relativistic Electron-Proton Telescope (REPT) on board the Radiation Belt Storm Probe (RBSP) pair of spacecraft consists of a stack of high-performance silicon solid-state detectors in a telescope configuration, a collimation aperture, and a thick case surrounding the detector stack to shield the sensors from penetrating radiation and bremsstrahlung. The instrument points perpendicular to the spin axis of the spacecraft and measures high-energy electrons (up to ∼20 MeV) with exc. . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 337-381 DOI: 10.1007/s11214-012-9950-9 Available at: http://link.springer.com/article/10.1007%2Fs11214-012-9950-9
More Details
Authors: Spence H E, Reeves G D, Baker D N, Blake J B, Bolton M, et al.
Title: Science Goals and Overview of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA’s Radiation Belt Storm Probes (RBSP) Mission
Abstract: The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA’s Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Magnetic Electron Ion Spectrometer (MagEIS), the Helium Oxygen Proton Electron (HOPE) senso. . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 311-336 DOI: DOI: 10.1007/s11214-013-0007-5 Available at: http://link.springer.com/article/10.1007%2Fs11214-013-0007-5
More Details
2012
Authors: Hudson M K, Brito Thiago, Elkington Scot, Kress Brian, Li Zhao, et al.
Title: Radiation belt 2D and 3D simulations for CIR-driven storms during Carrington Rotation 2068
Abstract: As part of the International Heliospheric Year, the Whole Heliosphere Interval, Carrington Rotation 2068, from March 20 to April 16, 2008 was chosen as an internationally coordinated observing and modeling campaign. A pair of solar wind structures identified as Corotating Interaction Regions (CIR), characteristic of the declining phase of the solar cycle and solar minimum, was identified in solar wind plasma measurements from the ACE satellite. Such structures have previously been determined to be geoeffective in producing enhanced outer zone radiation belt electron fluxes, on average greater than at solar maximum. MHD fields from the Coupled Magnetosphere–Ionosphere–Thermosphere (CMIT) model driven by ACE solar wind measurements at L1 have been used to drive both 2D and 3D weighted te. . .
Date: 07/2012 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 51 - 62 DOI: 10.1016/j.jastp.2012.03.017 Available at: http://www.sciencedirect.com/science/article/pii/S1364682612001010
More Details
2008
Authors: SHPRITS Y, ELKINGTON S, MEREDITH N, and SUBBOTIN D
Title: Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: Radial transport
Abstract: In this paper, we focus on the modeling of radial transport in the Earth's outer radiation belt. A historical overview of the first observations of the radiation belts is presented, followed by a brief description of radial diffusion. We describe how resonant interactions with poloidal and toroidal components of the ULF waves can change the electron's energy and provide radial displacements. We also present radial diffusion and guiding center simulations that show the importance of radial transport in redistributing relativistic electron fluxes and also in accelerating and decelerating radiation belt electrons. We conclude by presenting guiding center simulations of the coupled particle tracing and magnetohydrodynamic (MHD) codes and by discussing the origin of relativistic electrons at ge. . .
Date: 11/2008 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1679 - 1693 DOI: 10.1016/j.jastp.2008.06.008 Available at: http://www.sciencedirect.com/science/article/pii/S1364682608001648
More Details
Authors: SHPRITS Y, SUBBOTIN D, MEREDITH N, and ELKINGTON S
Title: Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss
Abstract: This paper focuses on the modeling of local acceleration and loss processes in the outer radiation belt. We begin by reviewing the statistical properties of waves that violate the first and second adiabatic invariants, leading to the loss and acceleration of high energy electrons in the outer radiation belt. After a brief description of the most commonly accepted methodology for computing quasi-linear diffusion coefficients, we present pitch-angle scattering simulations by (i) plasmaspheric hiss, (ii) a combination of plasmaspheric hiss and electromagnetic ion cyclotron (EMIC) waves, (iii) chorus waves, and (iv) a combination of chorus and EMIC waves. Simulations of the local acceleration and loss processes show that statistically, the net effect of chorus waves is acceleration at MeV ener. . .
Date: 11/2008 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1694 - 1713 DOI: 10.1016/j.jastp.2008.06.014 Available at: http://www.sciencedirect.com/science/article/pii/S1364682608001673
More Details
2006
Authors: Fei Yue, Chan Anthony A, Elkington Scot R, and Wiltberger Michael J
Title: Radial diffusion and MHD particle simulations of relativistic electron transport by ULF waves in the September 1998 storm
Abstract: In an MHD particle simulation of the September 1998 magnetic storm the evolution of the radiation belt electron radial flux profile appears to be diffusive, and diffusion caused by ULF waves has been invoked as the probable mechanism. In order to separate adiabatic and nonadiabatic effects and to investigate the radial diffusion mechanism during this storm, in this work we solve a radial diffusion equation with ULF wave diffusion coefficients and a time-dependent outer boundary condition, and the results are compared with the phase space density of the MHD particle simulation. The diffusion coefficients include contributions from both symmetric resonance modes (ω ≈ mωd, where ω is the wave frequency, m is the azimuthal wave number, and ωd is the bounce-averaged drift frequency) and . . .
Date: 12/2006 Publisher: Journal of Geophysical Research DOI: 10.1029/2005JA011211 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2005JA011211/abstract
More Details
Authors: Elkington Scot R, Takahashi K, Chi Peter J, Denton Richard E, and Lysak Robert L
Title: A review of ULF interactions with radiation belt electrons
Abstract: Energetic particle fluxes in the outer zone radiation belts can vary over orders of magnitude on a variety of timescales. Power at ULF frequencies, on the order of a few millihertz, have been associated with changes in flux levels among relativis- tic electrons comprising the outer zone of the radiation belts. Power in this part of the spectrum may occur as a result of a number of processes, including internally- generated waves induced by plasma instabilities, and externally generated processes such as shear instabilities at the flanks or compressive variations in the solar wind. Changes in the large-scale convective motion of the magnetosphere are another important class of externally driven variations with power at ULF wavelengths. The mechanism for interaction between ULF vari. . .
Date: Publisher: American Geophysical Union Pages: 177 - 193 DOI: 10.1029/169GM12 Available at: http://onlinelibrary.wiley.com/doi/10.1029/169GM12/summary
More Details
2005
Authors: Perry K L, Hudson M K, and Elkington S. R.
Title: Incorporating spectral characteristics of Pc5 waves into three-dimensional radiation belt modeling and the diffusion of relativistic electrons
Abstract: The influence of ultralow frequency (ULF) waves in the Pc5 frequency range on radiation belt electrons in a compressed dipole magnetic field is examined. This is the first analysis in three dimensions utilizing model ULF wave electric and magnetic fields on the guiding center trajectories of relativistic electrons. A model is developed, describing magnetic and electric fields associated with poloidal mode Pc5 ULF waves. The frequency and L dependence of the ULF wave power are included in this model by incorporating published ground-based magnetometer data. It is demonstrated here that realistic spectral characteristics play a significant role in the rate of diffusion of relativistic electrons via drift resonance with poloidal mode ULF waves. Radial diffusion rates including bounce motion s. . .
Date: 03/2005 Publisher: Journal of Geophysical Research DOI: 10.1029/2004JA010760 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2004JA010760/abstract
More Details
2003
Authors: Elkington Scot R
Title: Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field
Abstract: [1] The outer zone radiation belt consists of energetic electrons drifting in closed orbits encircling the Earth between ∼3 and 7 RE. Electron fluxes in the outer belt show a strong correlation with solar and magnetospheric activity, generally increasing during geomagnetic storms with associated high solar wind speeds, and increasing in the presence of magnetospheric ULF waves in the Pc-5 frequency range. In this paper, we examine the influence of Pc-5 ULF waves on energetic electrons drifting in an asymmetric, compressed dipole and find that such particles may be efficiently accelerated through a drift-resonant interaction with the waves. We find that the efficiency of this acceleration increases with increasing magnetospheric distortion (such as may be attributed to increased solar win. . .
Date: 03/2003 Publisher: Journal of Geophysical Research DOI: 10.1029/2001JA009202 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2001JA009202/full
More Details
2002
Authors: ELKINGTON S, Hudson M K, Wiltberger M J, and Lyon J G
Title: MHD/particle simulations of radiation belt dynamics
Abstract: Particle fluxes in the outer radiation belts can show substantial variation in time, over scales ranging from a few minutes, such as during the sudden commencement phase of geomagnetic storms, to the years-long variations associated with the progression of the solar cycle. As the energetic particles comprising these belts can pose a hazard to human activity in space, considerable effort has gone into understanding both the source of these particles and the physics governing their dynamical behavior. Computationally tracking individual test particles in a model magnetosphere represents a very direct, physically-based approach to modeling storm-time radiation belt dynamics. Using global magnetohydrodynamic models of the Earth–Sun system coupled with test particle simulations of the radiati. . .
Date: 04/2002 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 607 - 615 DOI: 10.1016/S1364-6826(02)00018-4 Available at: http://www.sciencedirect.com/science/article/pii/S1364682602000184
More Details
1999
Authors: Elkington Scot R, Hudson M K, and Chan Anthony A
Title: Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode Pc-5 ULF oscillations
Abstract: There has been increasing evidence that Pc-5 ULF oscillations play a fundamental role in the dynamics of outer zone electrons. In this work we examine the adiabatic response of electrons to toroidal-mode Pc-5 field line resonances using a simplified magnetic field model. We find that electrons can be adiabatically accelerated through a drift-resonant interaction with the waves, and present expressions describing the resonance condition and half-width for resonant interaction. The presence of magnetospheric convection electric fields is seen to increase the rate of resonant energization, and allow bulk acceleration of radiation belt electrons. Conditions leading to the greatest rate of acceleration in the proposed mechanism, a nonaxisymmetric magnetic field, superimposed toroidal oscillatio. . .
Date: 11/1999 Publisher: Geophysical Research Letters Pages: 3273 DOI: 10.1029/1999GL003659 Available at: http://onlinelibrary.wiley.com/doi/10.1029/1999GL003659/full
More Details
Authors: Burch L, Carovillano L, Antiochos K, Hudson M K, Elkington S R, et al.
Title: Simulation of Radiation Belt Dynamics Driven by Solar Wind Variations
Abstract: The rapid rise of relativistic electron fluxes inside geosynchronous orbit during the January 10-11, 1997, CME-driven magnetic cloud event has been simulated using a relativistic guiding center test particle code driven by out-put from a 3D global MHD simulation of the event. A comparison can be made of this event class, characterized by a moderate solar wind speed (< 600 km/s), and those commonly observed at the last solar maximum with a higher solar wind speed and shock accelerated solar energetic proton component. Relativistic electron flux increase occurred over several hours for the January event, during a period of prolonged southward IMF Bz more rapidly than the 1-2 day delay typical of flux increases driven by solar wind high speed stream interactions. Simulations of th. . .
Date: Publisher: American Geophysical Union Pages: 171 - 182 DOI: 10.1029/GM10910.1029/GM109p0171 Available at: http://onlinelibrary.wiley.com/doi/10.1029/GM109p0171/summary
More Details