Biblio

Found 9 results
Filters: Author is Zhang, J.-C.  [Clear All Filters]
2018
Authors: Tang C. L., Xie X. J., Ni B, Su Z. P., Reeves G D, et al.
Title: Rapid Enhancements of the Seed Populations in the Heart of the Earth's Outer Radiation Belt: A Multicase Study
Abstract: To better understand rapid enhancements of the seed populations (hundreds of keV electrons) in the heart of the Earth's outer radiation belt (L* ~ 3.5–5.0) during different geomagnetic activities, we investigate three enhancement events measured by Van Allen Probes in detail. Observations of the fluxes and the pitch angle distributions of energetic electrons are analyzed to determine rapid enhancements of the seed populations. Our study shows that three specified processes associated with substorm electron injections can lead to rapid enhancements of the seed populations, and the electron energy increases up to 342 keV. In the first process, substorm electron injections accompanied by the transient and intense substorm electric fields can directly lead to rapid enhancements of the seed p. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA025142 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2017JA025142
More Details
2017
Authors: Tang C. L., Wang Y. X., Ni B, Zhang J.-C., Reeves G D, et al.
Title: Radiation belt seed population and its association with the relativistic electron dynamics: A statistical study
Abstract: Using the particle data measured by Van Allen Probe A from October 2012 to March 2016, we investigate in detail the radiation belt seed population and its association with the relativistic electron dynamics during 74 geomagnetic storms. The period of the storm recovery phase was limited to 72 h. The statistical study shows that geomagnetic storms and substorms play important roles in the radiation belt seed population (336 keV electrons) dynamics. Based on the flux changes of 1 MeV electrons before and after the storm peak, these storm events are divided into two groups of “large flux enhancement” and “small flux enhancement.” For large flux enhancement storm events, the correlation coefficients between the peak flux location of the seed population and those of relativistic electro. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA023905 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA023905/full
More Details
Authors: Ferradas C. P., Zhang J.-C., Spence H E, Kistler L. M., Larsen B A, et al.
Title: Temporal evolution of ion spectral structures during a geomagnetic storm: Observations and modeling
Abstract: Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1-~50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet inner edge exhibits narrow nose spectral structures that vary little in energy across L values. Ion access to the inner magnetosphere during these times is limited to the nose energy bands. As co. . .
Date: 12/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024702 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024702/full
More Details
2016
Authors: Ferradas C. P., Zhang J.-C., Spence H E, Kistler L. M., Larsen B A, et al.
Title: Drift paths of ions composing multiple-nose spectral structures near the inner edge of the plasma sheet
Abstract: We present a case study of the H+, He+, and O+ multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of these ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of. . .
Date: 11/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071359 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071359/full
More Details
Authors: Ferradas C. P., Zhang J.-C., Spence H E, Kistler L. M., Larsen B A, et al.
Title: Ion nose spectral structures observed by the Van Allen Probes
Abstract: We present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequently in heavy ions than in H+, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H+ noses and there is an energy-magnetic loc. . .
Date: 11/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022942 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022942/full
More Details
2015
Authors: Ferradas C. P., Zhang J.-C., Kistler L. M., and Spence H E
Title: Heavy-ion dominance near Cluster perigees
Abstract: Time periods in which heavy ions dominate over H+ in the energy range of 1-40 keV were observed by the Cluster Ion Spectrometry (CIS)/COmposition DIstribution Function (CODIF) instrument onboard Cluster Spacecraft 4 at L-values less than 4. The characteristic feature is a narrow flux peak at around 10 keV that extends into low L-values, with He+ and/or O+ dominating. In the present work we perform a statistical study of these events and examine their temporal occurrence and spatial distribution. The observed features, both the narrow energy range and the heavy-ion dominance, can be interpreted using a model of ion drift from the plasma sheet, subject to charge exchange losses. The narrow energy range corresponds to the only energy range that has direct drift access from the plasma sheet du. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA021063 Available at: http://doi.wiley.com/10.1002/2015JA021063http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021063
More Details
Authors: Saikin A. A., Zhang J.-C., Allen R.C., Smith C W, Kistler L. M., et al.
Title: The occurrence and wave properties of H + -, He + -, and O + -band EMIC waves observed by the Van Allen Probes
Abstract: We perform a statistical study of electromagnetic ion cyclotron (EMIC) waves detected by the Van Allen Probes mission to investigate the spatial distribution of their occurrence, wave power, ellipticity, and normal angle. The Van Allen Probes have been used which allow us to explore the inner magnetosphere (1.1 to 5.8 Re). Magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science onboard the Van Allen Probes are used to identify EMIC wave events for the first 22 months of the mission operation (8 September 2012 – 30 June 2014). EMIC waves are examined in H+-, He+-, and O+-bands. Over 700 EMIC wave events have been identified over the three different wave bands (265 H+-band events, 438 He+-band events, and 68 O+-band events). EMIC wave events. . .
Date: 09/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021358 Available at: http://doi.wiley.com/10.1002/2015JA021358
More Details
Authors: Zhang J.-C., Kistler L. M., Spence H E, Wolf R. A., Reeves G., et al.
Title: “Trunk-like” heavy ion structures observed by the Van Allen Probes
Abstract: Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. We report “trunk-like” ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant's trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He+ and O+ ions but not in H+. During the event, ion energies in the He+ trunk, located at L = 3.6–2.6, MLT = 9.1–10.5, and MLAT = −2.4–0.09°, vary monotonically from 3.5 to 0.04 keV. The values at the two end points of the O+ trunk are: energy = 4.5–0.7 keV, L = 3.6–2.5, MLT = 9.1–10.7, and MLAT = −2.4–0.4°. Results from backward ion drift path tra. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021822 Available at: http://doi.wiley.com/10.1002/2015JA021822http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021822
More Details
2014
Authors: Zhang J.-C., Saikin A. A., Kistler L. M., Smith C W, Spence H E, et al.
Title: Excitation of EMIC waves detected by the Van Allen Probes on 28 April 2013
Abstract: We report the wave observations, associated plasma measurements, and linear theory testing of electromagnetic ion cyclotron (EMIC) wave events observed by the Van Allen Probes on 28 April 2013. The wave events are detected in their generation regions as three individual events in two consecutive orbits of Van Allen Probe-A, while the other spacecraft, B, does not detect any significant EMIC wave activity during this period. Three overlapping H+ populations are observed around the plasmapause when the waves are excited. The difference between the observational EMIC wave growth parameter (Σh) and the theoretical EMIC instability parameter (Sh) is significantly raised, on average, to 0.10 ± 0.01, 0.15 ± 0.02, and 0.07 ± 0.02 during the three wave events, respectively. On Van A. . .
Date: 06/2014 Publisher: Geophysical Research Letters Pages: 4101–4108 DOI: 10.1002/2014GL060621 Available at: http://doi.wiley.com/10.1002/2014GL060621
More Details