Biblio

Found 7 results
Filters: Author is Denton, Richard E.  [Clear All Filters]
2018
Authors: Min Kyungguk, Boardsen Scott A., Denton Richard E, and Liu Kaijun
Title: Equatorial Evolution of the Fast Magnetosonic Mode in the Source Region: Observation-Simulation Comparison of the Preferential Propagation Direction
Abstract: Recent analysis of an event observed by the Van Allen Probes in the source region outside the plasmapause has shown that fast magnetosonic waves (also referred to as equatorial noise) propagate preferentially in the azimuthal direction, implying that wave amplification should occur during azimuthal propagation. To demonstrate this, we carry out 2‐D particle‐in‐cell simulations of the fast magnetosonic mode at the dipole magnetic equator with the simulation box size, the magnetic field inhomogeneity, and the plasma parameters chosen from the same event recently analyzed. The self‐consistently evolving electric and magnetic field fluctuations are characterized by spectral peaks at harmonics of the local proton cyclotron frequency. The azimuthal component of the electric field fluctua. . .
Date: 11/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026037 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026037
More Details
Authors: Min Kyungguk, Liu Kaijun, Wang Xueyi, Chen Lunjin, and Denton Richard E
Title: Fast Magnetosonic Waves Observed by Van Allen Probes: Testing Local Wave Excitation Mechanism
Abstract: Linear Vlasov theory and particle-in-cell (PIC) simulations for electromagnetic fluctuations in a homogeneous, magnetized, and collisionless plasma are used to investigate a fast magnetosonic wave event observed by the Van Allen Probes. The fluctuating magnetic field observed exhibits a series of spectral peaks at harmonics of the proton cyclotron frequency Ωp and has a dominant compressional component, which can be classified as fast magnetosonic waves. Furthermore, the simultaneously observed proton phase space density exhibits positive slopes in the perpendicular velocity space, ∂fp/∂v⊥>0, which can be a source for these waves. Linear theory analyses and PIC simulations use plasma and field parameters measured in situ except that the modeled proton distribution is modified to hav. . .
Date: 01/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024867 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024867/full
More Details
Authors: Takahashi Kazue, Denton Richard E, Motoba Tetsuo, Matsuoka Ayako, Kasaba Yasumasa, et al.
Title: Impulsively Excited Nightside Ultralow Frequency Waves Simultaneously Observed On and Off the Magnetic Equator
Abstract: The Arase spacecraft is capable of observing ultralow‐frequency waves in the inner magnetosphere at intermediate magnetic latitudes, a region sparsely covered by previous space craft missions. We report a series of impulsively excited fundamental toroidal mode standing Alfvén waves in the midnight sector observed by Arase outside the plasmasphere at magnetic latitudes 13–24° . The wave onsets are concurrent with Pi2 onsets detected by the Van Allen Probe B spacecraft at the magnetic equator in the duskside plasmasphere and by ground magnetometers at low latitudes. The duration of each toroidal wave packet is ∼20 min, which is much longer than that of the corresponding Pi2 wave packet. The toroidal waves cannot be the source of high‐latitude Pi2 waves because they were not detecte. . .
Date: 07/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL078731 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL078731
More Details
2017
Authors: Min Kyungguk, Denton Richard E, Liu Kaijun, Gary Peter, and Spence Harlan E.
Title: Ion Bernstein instability as a possible source for oxygen ion cyclotron harmonic waves
Abstract: This paper demonstrates that an ion Bernstein instability can be a possible source for recently reported electromagnetic waves with frequencies at or near the singly ionized oxygen ion cyclotron frequency, inline image, and its harmonics. The particle measurements during strong wave activity revealed a relatively high concentration of oxygen ions (∼15%) whose phase space density exhibits a local peak at energy ∼20 keV. Given that the electron plasma-to-cyclotron frequency ratio is inline image, this energy corresponds to the particle speed inline image, where vA is the oxygen Alfvén speed. Using the observational key plasma parameters, a simplified ion velocity distribution is constructed, where the local peak in the oxygen ion velocity distribution is represented by an isotropic s. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA023979 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA023979/full
More Details
2015
Authors: Min Kyungguk, Liu Kaijun, Bonnell John W., Breneman Aaron W., Denton Richard E, et al.
Title: Study of EMIC wave excitation using direct ion measurements
Abstract: With data from Van Allen Probes, we investigate EMIC wave excitation using simultaneously observed ion distributions. Strong He-band waves occurred while the spacecraft was moving through an enhanced density region. We extract from Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer measurement the velocity distributions of warm heavy ions as well as anisotropic energetic protons that drive wave growth through the ion cyclotron instability. Fitting the measured ion fluxes to multiple sinm-type distribution functions, we find that the observed ions make up about 15% of the total ions, but about 85% of them are still missing. By making legitimate estimates of the unseen cold (below ~2 eV) ion composition from cutoff frequencies suggested by the observed wave spectrum, a series of. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020717 Available at: http://doi.wiley.com/10.1002/2014JA020717
More Details
2014
Authors: Takahashi Kazue, Denton Richard E, Kurth William, Kletzing Craig, Wygant John, et al.
Title: Externally driven plasmaspheric ULF waves observed by the Van Allen Probes
Abstract: We analyze data acquired by the Van Allen Probes on 8 November 2012, during a period of extended low geomagnetic activity, to gain new insight into plasmaspheric ultra-low-frequency (ULF) waves. The waves exhibited strong spectral power in the 5–40 mHzband and included multiharmonic toroidal waves visible up to the 11th harmonic, unprecedented in the plasmasphere. During this wave activity, the interplanetary magnetic field cone angle was small, suggesting that the waves were driven by broadband compressional ULF waves originating in the foreshock region. This source mechanism is supported by the tailward propagation of the compressional magnetic field perturbations at a phase velocity of a few hundred kilometers per second that is determined bythe cross phase analysis of data from the t. . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020373 Available at: http://doi.wiley.com/10.1002/2014JA020373
More Details
2006
Authors: Elkington Scot R, Takahashi K, Chi Peter J, Denton Richard E, and Lysak Robert L
Title: A review of ULF interactions with radiation belt electrons
Abstract: Energetic particle fluxes in the outer zone radiation belts can vary over orders of magnitude on a variety of timescales. Power at ULF frequencies, on the order of a few millihertz, have been associated with changes in flux levels among relativis- tic electrons comprising the outer zone of the radiation belts. Power in this part of the spectrum may occur as a result of a number of processes, including internally- generated waves induced by plasma instabilities, and externally generated processes such as shear instabilities at the flanks or compressive variations in the solar wind. Changes in the large-scale convective motion of the magnetosphere are another important class of externally driven variations with power at ULF wavelengths. The mechanism for interaction between ULF vari. . .
Date: Publisher: American Geophysical Union Pages: 177 - 193 DOI: 10.1029/169GM12 Available at: http://onlinelibrary.wiley.com/doi/10.1029/169GM12/summary
More Details