Found 7 results
Filters: Author is Chen, Y.  [Clear All Filters]
Authors: Zhao H., Friedel R H W, Chen Y., Reeves G D, Baker D N, et al.
Title: An empirical model of radiation belt electron pitch angle distributions based on Van Allen Probes measurements
Abstract: Based on over 4 years of Van Allen Probes measurements, an empirical model of radiation belt electron equatorial pitch angle distribution (PAD) is constructed. The model, developed by fitting electron PADs with Legendre polynomials, provides the statistical PADs as a function of L‐shell (L=1 – 6), magnetic local time (MLT), electron energy (~30 keV – 5.2 MeV), and geomagnetic activity (represented by the Dst index), and is also the first empirical PAD model in the inner belt and slot region. For MeV electrons, model results show more significant day‐night PAD asymmetry of electrons with higher energies and during disturbed times, which is caused by geomagnetic field configuration and flux radial gradient changes. Steeper PADs with higher fluxes around 90° pitch angle (PA) and lowe. . .
Date: 04/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025277 Available at:
More Details
Authors: Jordanova V K, Tu W., Chen Y., Morley S. K., Panaitescu A.-D., et al.
Title: RAM-SCB simulations of electron transport and plasma wave scattering during the October 2012 “double-dip” storm
Abstract: Mechanisms for electron injection, trapping, and loss in the near-Earth space environment are investigated during the October 2012 “double-dip” storm using our ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB). Pitch angle and energy scattering are included for the first time in RAM-SCB using L and magnetic local time (MLT)-dependent event-specific chorus wave models inferred from NOAA Polar-orbiting Operational Environmental Satellites (POES) and Van Allen Probes Electric and Magnetic Field Instrument Suite and Integrated Science observations. The dynamics of the source (approximately tens of keV) and seed (approximately hundreds of keV) populations of the radiation belts simulated with RAM-SCB is compared with Van Allen Probes Magnetic Electron . . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022470 Available at:
More Details
Authors: Hartley D. P., Chen Y., Kletzing C A, Denton M. H., and Kurth W S
Title: Applying the cold plasma dispersion relation to whistler mode chorus waves: EMFISIS wave measurements from the Van Allen Probes
Abstract: Most theoretical wave models require the power in the wave magnetic field in order to determine the effect of chorus waves on radiation belt electrons. However, researchers typically use the cold plasma dispersion relation to approximate the magnetic wave power when only electric field data are available. In this study, the validity of using the cold plasma dispersion relation in this context is tested using Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations of both the electric and magnetic spectral intensities in the chorus wave band (0.1–0.9 fce). Results from this study indicate that the calculated wave intensity is least accurate during periods of enhanced wave activity. For observed wave intensities >10−3 nT2, using the cold plasma dispersi. . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020808 Available at:
More Details
Authors: Reeves G D, Spence H E, Henderson M G, Tu W., Cunningham G. S., et al.
Title: Acceleration and loss driven by VLF chorus: Van Allen Probes observations and DREAM model results
Abstract: For over a decade now we have understood the response of the Earth's radiation belts to solar wind driving are a delicate balance of acceleration and loss processes. Theory has shown that the interaction of relativistic electrons with VLF whistler mode chorus can produce both energization through momentum diffusion and loss through pitch angle diffusion. Recent results from the Van Allen Probes mission has confirmed observationally that chorus can produce both acceleration and loss. The Van Allen Probes satellites are able to measure all the critical particle populations and wave fields with unprecedented precision and resolution but only at the two spacecraft locations. Those spatially-localized observations can be extended globally using three-dimensional diffusion codes such as the DREA. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929879 Available at:
More Details
Authors: Tu Weichao, Cunningham G. S., Chen Y., Morley S. K., Reeves G D, et al.
Title: Event-specific chorus wave and electron seed population models in DREAM3D using the Van Allen Probes
Abstract: The DREAM3D diffusion model is applied to Van Allen Probes observations of the fast dropout and strong enhancement of MeV electrons during the October 2012 “double-dip” storm. We show that in order to explain the very different behavior in the two “dips,” diffusion in all three dimensions (energy, pitch angle, and L*) coupled with data-driven, event-specific inputs, and boundary conditions is required. Specifically, we find that outward radial diffusion to the solar wind-driven magnetopause, an event-specific chorus wave model, and a dynamic lower-energy seed population are critical for modeling the dynamics. In contrast, models that include only a subset of processes, use statistical wave amplitudes, or rely on inward radial diffusion of a seed population, perform poorly. The resu. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1359 - 1366 DOI: 10.1002/2013GL058819 Available at:
More Details
Authors: Ripoll J.-F., Chen Y., Fennell J, and Friedel R
Title: On long decays of electrons in the vicinity of the slot region observed by HEO3
Abstract: Long decay periods of electron counts, which follow abrupt rises and last from weeks to months, have been observed by the HEO3 spacecraft in the vicinity of the slot region between the years 1998 and 2007. During the most stable decay periods as selected, e-folding timescales are extracted and statistically analyzed from observations as a function of L-shell and electron energy. A challenge is to reproduce the observed timescales from simulations of pitch angle diffusion by three acting waves–the plasmaspheric hiss, lightning-generated whistlers, and VLF transmitter waves. We perform full numerical simulations to accurately compute electron lifetimes. We choose to use the method and wave parameters proposed by Abel & Thorne [1998] with the goal to assess whether they can reproduce lifeti. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020449 Available at:
More Details
Authors: Chen Y., Friedel R. H. W., Henderson M. G., Claudepierre S. G., Morley S., et al.
Title: REPAD: An Empirical Model of Pitch-angle Distributions for Energetic Electrons in the Earth’s Outer Radiation Belt
Abstract: We have recently conducted a statistical survey on pitch angle distributions of energetic electrons trapped in the Earth's outer radiation belt, and a new empirical model was developed based upon survey results. This model—relativistic electron pitch angle distribution (REPAD)—aims to present statistical pictures of electron equatorial pitch angle distributions, instead of the absolute flux levels, as a function of energy, L shell, magnetic local time, and magnetic activity. To quantify and facilitate this statistical survey, we use Legendre polynomials to fit long-term in situ directional fluxes observed near the magnetic equator from three missions: CRRES, Polar, and LANL-97A. As the first of this kind of model, REPAD covers the whole outer belt region, providing not only the mean an. . .
Date: 03/2014 Publisher: Journal of Geophysical Research Pages: 1693-1708 DOI: 10.1002/2013JA019431 Available at:
More Details