Biblio

Found 134 results
Filters: Author is Reeves, G. D.  [Clear All Filters]
1998
Authors: Birn J, Thomsen M F, Borovsky J E, Reeves G D, McComas D J, et al.
Title: Substorm electron injections: Geosynchronous observations and test particle simulations
Abstract: We investigate electron acceleration and the flux increases associated with energetic electron injections on the basis of geosynchronous observations and test-electron orbits in the dynamic fields of a three-dimensional MHD simulation of neutral line formation and dipolarization in the magnetotail. This complements an earlier investigation of test protons [Birn et al., 1997b]. In the present paper we consider equatorial orbits only, using the gyrocenter drift approximation. It turns out that this approximation is valid for electrons prior to and during the flux rises observed in the near tail region of the model at all energies considered (∼ 100 eV to 1 MeV). The test particle model reproduces major observed characteristics: a fast flux rise, comparable to that of the ions, and the exist. . .
Date: 05/1998 Publisher: Journal of Geophysical Research Pages: 9235 - 9248 DOI: 10.1029/97JA02635 Available at: http://onlinelibrary.wiley.com/doi/10.1029/97JA02635/abstract
More Details
2001
Authors: Ingraham J C, Cayton T E, Belian R D, Christensen R A, Friedel R H W, et al.
Title: Substorm injection of relativistic electrons to geosynchronous orbit during the great magnetic storm of March 24, 1991
Abstract: The great March 1991 magnetic storm and the immediately preceding solar energetic particle event (SEP) were among the largest observed during the past solar cycle, and have been the object of intense study. We investigate here, using data from eight satellites, the very large delayed buildup of relativistic electron flux in the outer zone during a 1.5-day period beginning 2 days after onset of the main phase of this storm. A notable feature of the March storm is the intense substorm activity throughout the period of the relativistic flux buildup, and the good correlation between some temporal features of the lower-energy substorm-injected electron flux and the relativistic electron flux at geosynchronous orbit. Velocity dispersion analysis of these fluxes between geosynchronous satellites . . .
Date: 11/2001 Publisher: Journal of Geophysical Research Pages: 25759 - 25776 DOI: 10.1029/2000JA000458 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2000JA000458/full
More Details
2006
Authors: Shprits Y Y, Thorne R M, Friedel R, Reeves G D, Fennell J, et al.
Title: Outward radial diffusion driven by losses at magnetopause
Abstract: Loss mechanisms responsible for the sudden depletions of the outer electron radiation belt are examined based on observations and radial diffusion modeling, with L*-derived boundary conditions. SAMPEX data for October–December 2003 indicate that depletions often occur when the magnetopause is compressed and geomagnetic activity is high, consistent with outward radial diffusion for L* > 4 driven by loss to the magnetopause. Multichannel Highly Elliptical Orbit (HEO) satellite observations show that depletions at higher L occur at energies as low as a few hundred keV, which excludes the possibility of the electromagnetic ion cyclotron (EMIC) wave-driven pitch angle scattering and loss to the atmosphere at L* > 4. We further examine the viability of the outward radial diffusion loss by comp. . .
Date: 11/2006 Publisher: Journal of Geophysical Research DOI: 10.1029/2006JA011657 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2006JA011657/abstract
More Details
2013
Authors: Mann Ian R., Lee E. A., Claudepierre S G, Fennell J. F., Degeling A., et al.
Title: Discovery of the action of a geophysical synchrotron in the Earth’s Van Allen radiation belts
Abstract: Although the Earth’s Van Allen radiation belts were discovered over 50 years ago, the dominant processes responsible for relativistic electron acceleration, transport and loss remain poorly understood. Here we show evidence for the action of coherent acceleration due to resonance with ultra-low frequency waves on a planetary scale. Data from the CRRES probe, and from the recently launched multi-satellite NASA Van Allen Probes mission, with supporting modeling, collectively show coherent ultra-low frequency interactions which high energy resolution data reveals are far more common than either previously thought or observed. The observed modulations and energy-dependent spatial structure indicate a mode of action analogous to a geophysical synchrotron; this new mode of response represents . . .
Date: 11/2013 Publisher: Nature Communications DOI: 10.1038/ncomms3795 Available at: http://www.nature.com/doifinder/10.1038/ncomms3795
More Details
Authors: Reeves G D, Spence H E, Henderson M G, Morley S. K., Friedel R H W, et al.
Title: Electron Acceleration in the Heart of the Van Allen Radiation Belts
Abstract: The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth’s magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA’s Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belt. . .
Date: 07/2013 Publisher: Science Pages: 991 - 994 DOI: 10.1126/science.1237743 Available at: http://www.sciencemag.org/cgi/doi/10.1126/science.1237743
More Details
Authors: Thorne R M, Li W, Ni B, Ma Q, Bortnik J, et al.
Title: Evolution and slow decay of an unusual narrow ring of relativistic electrons near L ~ 3.2 following the September 2012 magnetic storm
Abstract: A quantitative analysis is performed on the decay of an unusual ring of relativistic electrons between 3 and 3.5 RE, which was observed by the Relativistic Electron Proton Telescope instrument on the Van Allen probes. The ring formed on 3 September 2012 during the main phase of a magnetic storm due to the partial depletion of the outer radiation belt for L > 3.5, and this remnant belt of relativistic electrons persisted at energies above 2 MeV, exhibiting only slow decay, until it was finally destroyed during another magnetic storm on 1 October. This long-term stability of the relativistic electron ring was associated with the rapid outward migration and maintenance of the plasmapause to distances greater than L = 4. The remnant ring was thus immune from the dynamic process, whic. . .
Date: 06/2013 Publisher: Geophysical Research Letters DOI: 10.1002/grl.50627 Available at: http://onlinelibrary.wiley.com/doi/10.1002/grl.50627/full
More Details
Authors: Dai L, Takahashi K, Wygant J R, Chen L, Bonnell J W, et al.
Title: Excitation of Poloidal standing Alfven waves through the drift resonance wave-particle interaction
Abstract: Drift-resonance wave-particle interaction is a fundamental collisionless plasma process studied extensively in theory. Using cross-spectral analysis of electric field, magnetic field, and ion flux data from the Van Allen Probe (Radiation Belt Storm Probes) spacecraft, we present direct evidence identifying the generation of a fundamental mode standing poloidal wave through drift-resonance interactions in the inner magnetosphere. Intense azimuthal electric field (Eφ) oscillations as large as 10mV/m are observed, associated with radial magnetic field (Br) oscillations in the dawn-noon sector near but south of the magnetic equator at L∼5. The observed wave period, Eφ/Br ratio and the 90° phase lag between Br and Eφ are all consistent with fundamental mode standing Poloidal waves. Phase . . .
Date: 08/2013 Publisher: Geophysical Research Letters DOI: 10.1002/grl.50800 Available at: http://onlinelibrary.wiley.com/doi/10.1002/grl.50800/full
More Details
Authors: Li X, Schiller Q., Blum L., Califf S., Zhao H., et al.
Title: First Results from CSSWE CubeSat: Characteristics of Relativistic Electrons in the Near-Earth Environment During the October 2012 Magnetic Storms
Abstract: Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board the Colorado Student Space Weather Experiment (CSSWE) CubeSat mission, which was launched into a highly inclined (65°) low Earth orbit, are analyzed along with measurements from the Relativistic Electron and Proton Telescope (REPT) and the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the Van Allen Probes, which are in a low inclination (10°) geo-transfer-like orbit. Both REPT and MagEIS measure the full distribution of energetic electrons as they traverse the heart of the outer radiation belt. However, due to the small equatorial loss cone (only a few degrees), it is difficult for REPT and MagEIS to directly determine which electrons will precipitate into the. . .
Date: 10/2013 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2013JA019342 Available at: http://doi.wiley.com/10.1002/2013JA019342
More Details
Authors: Funsten H O, Skoug R M, Guthrie A A, MacDonald E A, Baldonado J R, et al.
Title: Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission
Abstract: The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin. . .
Date: 08/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-9968-7 Available at: http://link.springer.com/article/10.1007%2Fs11214-013-9968-7
More Details
Authors: Baker D N, Hoxie V C, Jaynes A., Kale A., Kanekal S G, et al.
Title: James Van Allen and His Namesake NASA Mission
Abstract: In many ways, James A. Van Allen defined and “invented” modern space research. His example showed the way for government-university partners to pursue basic research that also served important national and international goals. He was a tireless advocate for space exploration and for the role of space science in the spectrum of national priorities.
Date: 12/2013 Publisher: Eos, Transactions American Geophysical Union Pages: 469 - 470 DOI: 10.1002/eost.v94.4910.1002/2013EO490001 Available at: http://doi.wiley.com/10.1002/eost.v94.49http://doi.wiley.com/10.1002/2013EO490001
More Details
Authors: Baker D N, Kanekal S G, Hoxie V C, Henderson M G, Li X, et al.
Title: A Long-Lived Relativistic Electron Storage Ring Embedded in Earth's Outer Van Allen Belt
Abstract: Since their discovery more than 50 years ago, Earth’s Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (>2 MeV) electrons that formed on 2 September 2012 and persisted largely unc. . .
Date: 04/2013 Publisher: Science Pages: 186-190 DOI: 10.1126/science.1233518 Available at: http://www.sciencemag.org/content/340/6129/186
More Details
Authors: Morley S. K., Henderson M G, Reeves G D, Friedel R H W, and Baker D N
Title: Phase Space Density matching of relativistic electrons using the Van Allen Probes: REPT results
Abstract: 1] Phase Space Density (PSD) matching can be used to identify the presence of nonadiabatic processes, evaluate accuracy of magnetic field models, or to cross-calibrate instruments. Calculating PSD in adiabatic invariant coordinates requires a global specification of the magnetic field. For a well specified global magnetic field, nonadiabatic processes or inadequate cross calibration will give a poor PSD match. We have calculated PSD(μ, K) for both Van Allen Probes using a range of models and compare these PSDs at conjunctions in L* (for given μ, K). We quantitatively assess the relative goodness of each model for radiation belt applications. We also quantify the uncertainty in the model magnetic field magnitude and the related uncertainties in PSD, which has applications for modeling and. . .
Date: 09/2013 Publisher: Geophysical Research Letters Pages: 4798–4802 DOI: 10.1002/grl.50909 Available at: http://doi.wiley.com/10.1002/grl.50909
More Details
Authors: Thorne R M, Li W, Ni B, Ma Q, Bortnik J, et al.
Title: Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus
Abstract: Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density1, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt2, 3, but are inconsistent with acceleration by inward radial diffusive transport4, 5. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emission known as chorus could be a potential candidate for local electron acceleration6, 7, 8, 9, 10, but a definitive resolution of the importance of chorus for radiation-belt acceleration was not possible because of limitations in the energy range and resolution of previous. . .
Date: 12/2013 Publisher: Nature Pages: 411 - 414 DOI: 10.1038/nature12889 Available at: http://www.nature.com/doifinder/10.1038/nature12889
More Details
Authors: Spence H E, Reeves G D, Baker D N, Blake J B, Bolton M, et al.
Title: Science Goals and Overview of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA’s Radiation Belt Storm Probes (RBSP) Mission
Abstract: The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA’s Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Magnetic Electron Ion Spectrometer (MagEIS), the Helium Oxygen Proton Electron (HOPE) senso. . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 311-336 DOI: DOI: 10.1007/s11214-013-0007-5 Available at: http://link.springer.com/article/10.1007%2Fs11214-013-0007-5
More Details
Authors: Li W, Thorne R M, Bortnik J, Reeves G D, Kletzing C A, et al.
Title: An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons
Abstract: Both plasmaspheric hiss and chorus waves were observed simultaneously by the two Van Allen Probes in association with substorm-injected energetic electrons. Probe A, located inside the plasmasphere in the postdawn sector, observed intense plasmaspheric hiss, whereas Probe B observed chorus waves outside the plasmasphere just before dawn. Dispersed injections of energetic electrons were observed in the dayside outer plasmasphere associated with significant intensification of plasmaspheric hiss at frequencies down to ~20 Hz, much lower than typical hiss wave frequencies of 100–2000 Hz. In the outer plasmasphere, the upper energy of injected electrons agrees well with the minimum cyclotron resonant energy calculated for the lower cutoff frequency of the observed hiss, and computed conve. . .
Date: 08/2013 Publisher: Geophysical Research Letters Pages: 3798 - 3803 DOI: 10.1002/grl.50787 Available at: http://doi.wiley.com/10.1002/grl.50787
More Details
Authors: Claudepierre S G, Mann I R, Takahashi K, Fennell J F, Hudson M K, et al.
Title: Van Allen Probes observation of localized drift-resonance between poloidal mode ultra-low frequency waves and 60 keV electrons
Abstract: [1] We present NASA Van Allen Probes observations of wave-particle interactions between magnetospheric ultra-low frequency (ULF) waves and energetic electrons (20–500 keV) on 31 October 2012. The ULF waves are identified as the fundamental poloidal mode oscillation and are excited following an interplanetary shock impact on the magnetosphere. Large amplitude modulations in energetic electron flux are observed at the same period (≈ 3 min) as the ULF waves and are consistent with a drift-resonant interaction. The azimuthal mode number of the interacting wave is estimated from the electron measurements to be ~40, based on an assumed symmetric drift resonance. The drift-resonant interaction is observed to be localized and occur over 5–6 wave cycles, demonstrating peak electron flux modul. . .
Date: 09/2013 Publisher: Geophysical Research Letters Pages: 4491–4497 DOI: 10.1002/grl.50901 Available at: http://onlinelibrary.wiley.com/doi/10.1002/grl.50901/full
More Details
2014
Authors: Reeves G D, Spence H E, Henderson M G, Tu W., Cunningham G. S., et al.
Title: Acceleration and loss driven by VLF chorus: Van Allen Probes observations and DREAM model results
Abstract: For over a decade now we have understood the response of the Earth's radiation belts to solar wind driving are a delicate balance of acceleration and loss processes. Theory has shown that the interaction of relativistic electrons with VLF whistler mode chorus can produce both energization through momentum diffusion and loss through pitch angle diffusion. Recent results from the Van Allen Probes mission has confirmed observationally that chorus can produce both acceleration and loss. The Van Allen Probes satellites are able to measure all the critical particle populations and wave fields with unprecedented precision and resolution but only at the two spacecraft locations. Those spatially-localized observations can be extended globally using three-dimensional diffusion codes such as the DREA. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929879 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929879
More Details
Authors: Turner D. L., Angelopoulos V, Morley S. K., Henderson M G, Reeves G D, et al.
Title: On the cause and extent of outer radiation belt losses during the 30 September 2012 dropout event
Abstract: On 30 September 2012, a flux “dropout” occurred throughout Earth's outer electron radiation belt during the main phase of a strong geomagnetic storm. Using eight spacecraft from NASA's Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Van Allen Probes missions and NOAA's Geostationary Operational Environmental Satellites constellation, we examined the full extent and timescales of the dropout based on particle energy, equatorial pitch angle, radial distance, and species. We calculated phase space densities of relativistic electrons, in adiabatic invariant coordinates, which revealed that loss processes during the dropout were > 90% effective throughout the majority of the outer belt and the plasmapause played a key role in limiting the spatial extent . . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1530 - 1540 DOI: 10.1002/2013JA019446 Available at: http://doi.wiley.com/10.1002/2013JA019446
More Details
Authors: Xiao Fuliang, Yang Chang, He Zhaoguo, Su Zhenpeng, Zhou Qinghua, et al.
Title: Chorus acceleration of radiation belt relativistic electrons during March 2013 geomagnetic storm
Abstract: The recent launching of Van Allen probes provides an unprecedent opportunity to investigate variations of the radiation belt relativistic electrons. During the 17–19 March 2013 storm, the Van Allen probes simultaneously detected strong chorus waves and substantial increases in fluxes of relativistic (2 − 4.5 MeV) electrons around L = 4.5. Chorus waves occurred within the lower band 0.1–0.5fce (the electron equatorial gyrofrequency), with a peak spectral density ∼10−4 nT2/Hz. Correspondingly, relativistic electron fluxes increased by a factor of 102–103 during the recovery phase compared to the main phase levels. By means of a Gaussian fit to the observed chorus spectra, the drift and bounce-averaged diffusion coefficients are calculated and then used to solve a 2-D Fokker-Planc. . .
Date: 05/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 3325 - 3332 DOI: 10.1002/2014JA019822 Available at: http://doi.wiley.com/10.1002/2014JA019822
More Details
Authors: Turner D. L., Angelopoulos V, Li W, Bortnik J, Ni B, et al.
Title: Competing source and loss mechanisms due to wave-particle interactions in Earth's outer radiation belt during the 30 September to 3 October 2012 geomagnetic storm
Abstract: Drastic variations of Earth's outer radiation belt electrons ultimately result from various competing source, loss, and transport processes, to which wave-particle interactions are critically important. Using 15 spacecraft including NASA's Van Allen Probes, THEMIS, and SAMPEX missions and NOAA's GOES and POES constellations, we investigated the evolution of the outer belt during the strong geomagnetic storm of 30 September to 3 October 2012. This storm's main phase dropout exhibited enhanced losses to the atmosphere at L* < 4, where the phase space density (PSD) of multi-MeV electrons dropped by over an order of magnitude in <4 h. Based on POES observations of precipitating >1 MeV electrons and energetic protons, SAMPEX >1 MeV electrons, and ground observations of band-limited Pc. . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1960 - 1979 DOI: 10.1002/jgra.v119.310.1002/2014JA019770 Available at: http://doi.wiley.com/10.1002/jgra.v119.3http://doi.wiley.com/10.1002/2014JA019770
More Details
Authors: Mozer F S, Agapitov O., Krasnoselskikh V., Lejosne S., Reeves G D, et al.
Title: Direct Observation of Radiation-Belt Electron Acceleration from Electron-Volt Energies to Megavolts by Nonlinear Whistlers
Abstract: The mechanisms for accelerating electrons from thermal to relativistic energies in the terrestrial magnetosphere, on the sun, and in many astrophysical environments have never been verified. We present the first direct observation of two processes that, in a chain, cause this acceleration in Earth’s outer radiation belt. The two processes are parallel acceleration from electron-volt to kilovolt energies by parallel electric fields in time-domain structures (TDS), after which the parallel electron velocity becomes sufficiently large for Doppler-shifted upper band whistler frequencies to be in resonance with the electron gyration frequency, even though the electron energies are kilovolts and not hundreds of kilovolts. The electrons are then accelerated by the whistler perpendicular electri. . .
Date: 07/2014 Publisher: Phys. Rev. Lett. Pages: 035001 DOI: 10.1103/PhysRevLett.113.035001 Available at: http://link.aps.org/doi/10.1103/PhysRevLett.113.035001
More Details
Authors: Usanova M. E., Drozdov A., Orlova K., Mann I. R., Shprits Y., et al.
Title: Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground-based and Van Allen Probes observations
Abstract: We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch angle scattering of relativistic and ultrarelativistic electrons during the recovery phase of a moderate geomagnetic storm on 11 October 2012. The EMIC wave activity was observed in situ on the Van Allen Probes and conjugately on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity throughout an extended 18 h interval. However, neither enhanced precipitation of >0.7 MeV electrons nor reductions in Van Allen Probe 90° pitch angle ultrarelativistic electron flux were observed. Computed radiation belt electron pitch angle diffusion rates demonstrate that rapid pitch angle diffusion is confined to low pitch angles and cannot reach 90°. For the first time, from both obse. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1375 - 1381 DOI: 10.1002/2013GL059024 Available at: http://doi.wiley.com/10.1002/2013GL059024
More Details
Authors: O'Brien T P, Claudepierre S G, Blake J B, Fennell J. F., Clemmons J. H., et al.
Title: An empirically observed pitch-angle diffusion eigenmode in the Earth's electron belt near L *  = 5.0
Abstract: Using data from NASA's Van Allen Probes, we have identified a synchronized exponential decay of electron flux in the outer zone, near L* = 5.0. Exponential decays strongly indicate the presence of a pure eigenmode of a diffusion operator acting in the synchronized dimension(s). The decay has a time scale of about 4 days with no dependence on pitch angle. While flux at nearby energies and L* is also decaying exponentially, the decay time varies in those dimensions. This suggests the primary decay mechanism is elastic pitch angle scattering, which itself depends on energy and L*. We invert the shape of the observed eigenmode to obtain an approximate shape of the pitch angle diffusion coefficient and show excellent agreement with diffusion by plasmaspheric hiss. Our results suggest that e. . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 251 - 258 DOI: 10.1002/2013GL058713 Available at: http://doi.wiley.com/10.1002/2013GL058713
More Details
Authors: Mauk B H, Blake J B, Baker D N, Clemmons J. H., Reeves G D, et al.
Title: The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission
Abstract: The Energetic Particle Detector (EPD) Investigation is one of 5 fields-and-particles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth’s magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each of the 4 spacecraft, and the Fly’s Eye Energetic Particle Spectrometer (FEEPS) with 2 instruments on each of the 4 spacecraft. EIS measures energetic ion energy, angle and elemental compositional distributions from a required low energy limit of 20 keV for protons and 45 keV for o. . .
Date: 06/2014 Publisher: Space Science Reviews DOI: 10.1007/s11214-014-0055-5 Available at: http://link.springer.com/10.1007/s11214-014-0055-5http://link.springer.com/content/pdf/10.1007/s11214-014-0055-5
More Details
Authors: Tu Weichao, Cunningham G. S., Chen Y., Morley S. K., Reeves G D, et al.
Title: Event-specific chorus wave and electron seed population models in DREAM3D using the Van Allen Probes
Abstract: The DREAM3D diffusion model is applied to Van Allen Probes observations of the fast dropout and strong enhancement of MeV electrons during the October 2012 “double-dip” storm. We show that in order to explain the very different behavior in the two “dips,” diffusion in all three dimensions (energy, pitch angle, and L*) coupled with data-driven, event-specific inputs, and boundary conditions is required. Specifically, we find that outward radial diffusion to the solar wind-driven magnetopause, an event-specific chorus wave model, and a dynamic lower-energy seed population are critical for modeling the dynamics. In contrast, models that include only a subset of processes, use statistical wave amplitudes, or rely on inward radial diffusion of a seed population, perform poorly. The resu. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1359 - 1366 DOI: 10.1002/2013GL058819 Available at: http://doi.wiley.com/10.1002/2013GL058819
More Details
Authors: Zhang J.-C., Saikin A. A., Kistler L. M., Smith C W, Spence H E, et al.
Title: Excitation of EMIC waves detected by the Van Allen Probes on 28 April 2013
Abstract: We report the wave observations, associated plasma measurements, and linear theory testing of electromagnetic ion cyclotron (EMIC) wave events observed by the Van Allen Probes on 28 April 2013. The wave events are detected in their generation regions as three individual events in two consecutive orbits of Van Allen Probe-A, while the other spacecraft, B, does not detect any significant EMIC wave activity during this period. Three overlapping H+ populations are observed around the plasmapause when the waves are excited. The difference between the observational EMIC wave growth parameter (Σh) and the theoretical EMIC instability parameter (Sh) is significantly raised, on average, to 0.10 ± 0.01, 0.15 ± 0.02, and 0.07 ± 0.02 during the three wave events, respectively. On Van A. . .
Date: 06/2014 Publisher: Geophysical Research Letters Pages: 4101–4108 DOI: 10.1002/2014GL060621 Available at: http://doi.wiley.com/10.1002/2014GL060621
More Details
Authors: Zhou Qinghua, Xiao Fuliang, Yang Chang, Liu Si, Kletzing C A, et al.
Title: Excitation of nightside magnetosonic waves observed by Van Allen Probes
Abstract: During the recovery phase of the geomagnetic storm on 30-31 March 2013, Van Allen Probe A detected enhanced magnetosonic (MS) waves in a broad range of L =1.8-4.7 and MLT =17-22 h, with a frequency range ~10-100 Hz. In the meanwhile, distinct proton ring distributions with peaks at energies of ~10 keV, were also observed in L =3.2-4.6 and L =5.0-5.6. Using a subtracted bi-Maxwellian distribution to model the observed proton ring distribution, we perform three dimensional ray tracing to investigate the instability, propagation and spatial distribution of MS waves. Numerical results show that nightside MS waves are produced by proton ring distribution and grow rapidly from the source location L =5.6 to the location L =5.0, but remain nearly stable at locations L <5.0 Moreover, waves launched. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2014JA020481 Available at: http://doi.wiley.com/10.1002/2014JA020481
More Details
Authors: Chen Lunjin, Thorne Richard M, Bortnik Jacob, Li Wen, Horne Richard B, et al.
Title: Generation of Unusually Low Frequency Plasmaspheric Hiss
Abstract: It has been reported from Van Allen Probe observations that plasmaspheric hiss intensification in the outer plasmasphere, associated with a substorm injection on Sept 30 2012, occurred with a peak frequency near 100 Hz, well below the typical plasmaspheric hiss frequency range, extending down to ~20 Hz. We examine this event of unusually low frequency plasmaspheric hiss to understand its generation mechanism. Quantitative analysis is performed by simulating wave ray paths via the HOTRAY ray tracing code with measured plasma density and calculating ray path-integrated wave gain evaluated using the measured energetic electron distribution. We demonstrate that the growth rate due to substorm injected electrons is positive but rather weak, leading to small wave gain (~10 dB) during a sin. . .
Date: 08/2014 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL060628 Available at: http://doi.wiley.com/10.1002/2014GL060628
More Details
Authors: Baker D N, Jaynes A. N., Li X, Henderson M G, Kanekal S G, et al.
Title: Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations
Abstract: The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth's radiation belts. Observations (up to E ~10 MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L ~4.0 ± 0.5). Thi. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1351 - 1358 DOI: 10.1002/2013GL058942 Available at: http://doi.wiley.com/10.1002/2013GL058942
More Details
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons
Abstract: Local acceleration driven by whistler mode chorus waves largely accounts for the enhancement of radiation belt relativistic electron fluxes, whose favored region is usually considered to be the plasmatrough with magnetic local time approximately from midnight through dawn to noon. On 2 October 2013, the Van Allen Probes recorded a rarely reported event of intense duskside lower band chorus waves (with power spectral density up to 10−3nT2/Hz) in the low-latitude region outside of L=5. Such chorus waves are found to be generated by the substorm-injected anisotropic suprathermal electrons and have a potentially strong acceleration effect on the radiation belt energetic electrons. This event study demonstrates the possibility of broader spatial regions with effective electron acceleration by. . .
Date: 06/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 4266 - 4273 DOI: 10.1002/jgra.v119.610.1002/2014JA019919 Available at: http://doi.wiley.com/10.1002/jgra.v119.6http://doi.wiley.com/10.1002/2014JA019919
More Details
Authors: Malaspina D. M., Andersson L., Ergun R. E., Wygant J R, Bonnell J W, et al.
Title: Nonlinear Electric Field Structures in the Inner Magnetosphere
Abstract: Van Allen Probes observations are presented which demonstrate the presence of nonlinear electric field structures in the inner terrestrial magnetosphere (< 6 RE). A range of structures are observed, including phase space holes and double layers.These structures are observed over several Earth radii in radial distance and over a wide range of magnetic local times. They are observed in the dusk, midnight, and dawn sectors, with the highest concentration pre-midnight. Some nonlinear electric field structures are observed to coincide with dipolarizations of the magnetic field and increases in electron energy flux for energies between 1 keV and 30 keV. Nonlinear electric field structures possess isolated impulsive electric fields, often with a significant component parallel to the ambient m. . .
Date: 08/2014 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL061109 Available at: http://doi.wiley.com/10.1002/2014GL061109
More Details
Authors: Su Zhenpeng, Xiao Fuliang, Zheng Huinan, He Zhaoguo, Zhu Hui, et al.
Title: Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes
Abstract: Storm time electron radiation belt dynamics have been widely investigated for many years. Here we present a rarely reported nonstorm time event of electron radiation belt evolution observed by the Van Allen Probes during 21–24 February 2013. Within 2 days, a new belt centering around L=5.8 formed and gradually merged with the original outer belt, with the enhancement of relativistic electron fluxes by a factor of up to 50. Strong chorus waves (with power spectral density up to 10−4nT2/Hz) occurred in the region L>5. Taking into account the local acceleration driven by these chorus waves, the two-dimensional STEERB can approximately reproduce the observed energy spectrums at the center of the new belt. These results clearly illustrate the complexity of electron radiation belt behaviors . . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 229 - 235 DOI: 10.1002/2013GL058912 Available at: http://doi.wiley.com/10.1002/2013GL058912
More Details
Authors: Foster J. C., Erickson P. J., Baker D N, Claudepierre S G, Kletzing C A, et al.
Title: Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations
Abstract: On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (>2 MeV) electron fluxes increased immediately at L* ~ 4.5. . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 20 - 25 DOI: 10.1002/2013GL058438 Available at: http://doi.wiley.com/10.1002/2013GL058438
More Details
Authors: Li W, Ni B, Thorne R M, Bortnik J, Nishimura Y., et al.
Title: Quantifying hiss-driven energetic electron precipitation: A detailed conjunction event analysis
Abstract: We analyze a conjunction event between the Van Allen Probes and the low-altitude Polar Orbiting Environmental Satellite (POES) to quantify hiss-driven energetic electron precipitation. A physics-based technique based on quasi-linear diffusion theory is used to estimate the ratio of precipitated and trapped electron fluxes (R), which could be measured by the two-directional POES particle detectors, using wave and plasma parameters observed by the Van Allen Probes. The remarkable agreement between modeling and observations suggests that this technique is applicable for quantifying hiss-driven electron scattering near the bounce loss cone. More importantly, R in the 100–300 keV energy channel measured by multiple POES satellites over a broad L magnetic local time region can potentially pr. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1085 - 1092 DOI: 10.1002/2013GL059132 Available at: http://doi.wiley.com/10.1002/2013GL059132
More Details
Authors: Boyd A. J., Spence H E, Claudepierre S G, Fennell J. F., Blake J B, et al.
Title: Quantifying the radiation belt seed population in the 17 March 2013 electron acceleration event
Abstract: We present phase space density (PSD) observations using data from the Magnetic Electron Ion Spectrometer instrument on the Van Allen Probes for the 17 March 2013 electron acceleration event. We confirm previous results and quantify how PSD gradients depend on the first adiabatic invariant. We find a systematic difference between the lower-energy electrons (1 MeV with a source region within the radiation belts. Our observations show that the source process begins with enhancements to the 10s–100s keV energy seed population, followed by enhancements to the >1 MeV population and eventually leading to enhancements in the multi-MeV electron population. These observations provide the clearest evidence to date . . .
Date: 04/2014 Publisher: Geophysical Research Letters Pages: 2275 - 2281 DOI: 10.1002/2014GL059626 Available at: http://doi.wiley.com/10.1002/2014GL059626
More Details
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt
Abstract: We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by RBSP and THEMIS satellites, and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about 6 hours, with up to four orders of magnitude enhancement in the 30 keV-5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100% and 20% of the total subrelativistic (~0.1 MeV) and relativistic (2-5 MeV) electron . . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020709 Available at: http://doi.wiley.com/10.1002/2014JA020709
More Details
Authors: Li W, Thorne R M, Ma Q, Ni B, Bortnik J, et al.
Title: Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm
Abstract: Local acceleration driven by whistler-mode chorus waves is fundamentally important for accelerating seed electron populations to highly relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when the Van Allen Probes observed very rapid electron acceleration up to several MeV within ~12 hours. A clear radial peak in electron phase space density (PSD) observed near L* ~4 indicates that an internal local acceleration process was operating. We construct the global distribution of chorus wave intensity from the low-altitude electron measurements made by multiple Polar Orbiting Environmental Satellites (POES) satellites over a broad region, which is ultimately used to simulate the radiati. . .
Date: 06/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 4681 - 4693 DOI: 10.1002/jgra.v119.610.1002/2014JA019945 Available at: http://doi.wiley.com/10.1002/jgra.v119.6http://doi.wiley.com/10.1002/2014JA019945
More Details
Authors: Jordanova V K, Yu Y., Niehof J T, Skoug R M, Reeves G D, et al.
Title: Simulations of inner magnetosphere dynamics with an expanded RAM-SCB model and comparisons with Van Allen Probes observations
Abstract: Simulations from our newly expanded ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB), now valid out to 9 RE, are compared for the first time with Van Allen Probes observations. The expanded model reproduces the storm time ring current buildup due to the increased convection and inflow of plasma from the magnetotail. It matches Magnetic Electron Ion Spectrometer (MagEIS) observations of the trapped high-energy (>50 keV) ion flux; however, it underestimates the low-energy (<10 keV) Helium, Oxygen, Proton, and Electron (HOPE) observations. The dispersed injections of ring current ions observed with the Energetic particle, Composition, and Thermal plasma (ECT) suite at high (>20 keV) energy are better reproduced using a high-resolution convection model. . . .
Date: 04/2014 Publisher: Geophysical Research Letters Pages: 2687 - 2694 DOI: 10.1002/2014GL059533 Available at: http://doi.wiley.com/10.1002/2014GL059533
More Details
Authors: Ma Q, Li W, Chen L, Thorne R M, Kletzing C A, et al.
Title: The trapping of equatorial magnetosonic waves in the Earth's outer plasmasphere
Abstract: We investigate the excitation and propagation of equatorial magnetosonic waves observed by the Van Allen Probes and describe evidence for a trapping mechanism for magnetosonic waves in the Earth's plasmasphere. Intense equatorial magnetosonic waves were observed inside the plasmasphere in association with a pronounced proton ring distribution, which provides free energy for wave excitation. Instability analysis along the inbound orbit demonstrates that broadband magnetosonic waves can be excited over a localized spatial region near the plasmapause. The waves can subsequently propagate into the inner plasmasphere and remain trapped over a limited radial extent, consistent with the predictions of near-perpendicular propagation. By performing a similar analysis on another observed magnetosoni. . .
Date: 09/2014 Publisher: Geophysical Research Letters Pages: 6307 - 6313 DOI: 10.1002/2014GL061414 Available at: http://doi.wiley.com/10.1002/2014GL061414
More Details
Authors: Fennell J. F., Roeder J. L., Kurth W S, Henderson M G, Larsen B A, et al.
Title: Van Allen Probes observations of direct wave-particle interactions
Abstract: Quasiperiodic increases, or “bursts,” of 17–26 keV electron fluxes in conjunction with chorus wave bursts were observed following a plasma injection on 13 January 2013. The pitch angle distributions changed during the burst events, evolving from sinN(α) to distributions that formed maxima at α = 75–80°, while fluxes at 90° and <60° remained nearly unchanged. The observations occurred outside of the plasmasphere in the postmidnight region and were observed by both Van Allen Probes. Density, cyclotron frequency, and pitch angle of the peak flux were used to estimate resonant electron energy. The result of ~15–35 keV is consistent with the energies of the electrons showing the flux enhancements and corresponds to electrons in and above the steep flux gradient that signa. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1869 - 1875 DOI: 10.1002/2013GL059165 Available at: http://doi.wiley.com/10.1002/2013GL059165
More Details
2015
Authors: Claudepierre S G, O'Brien T P, Blake J B, Fennell J. F., Roeder J. L., et al.
Title: A background correction algorithm for Van Allen Probes MagEIS electron flux measurements
Abstract: We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes MagEIS electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30-500 keV) and in regions of geospace where multi-MeV electrons are present. Inner zone protons produce contamination in all MagEIS energy channels at roughly L < 2.5. The background corrected MagEIS electron data produce a more accurate me. . .
Date: 06/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021171 Available at: http://doi.wiley.com/10.1002/2015JA021171
More Details
Authors: Hwang J., Choi E.-J., Park J.-S., Fok M.-C., Lee D.-Y., et al.
Title: Comprehensive analysis of the flux dropout during 7-8 November 2008 storm using multi-satellites observations and RBE model
Abstract: We investigate an electron flux dropout during a weak storm on 7–8 November 2008, with Dst minimum value being −37 nT. During this period, two clear dropouts were observed on GOES 11 > 2 MeV electrons. We also find a simultaneous dropout in the subrelativistic electrons recorded by Time History of Events and Macroscale Interactions during Substorms probes in the outer radiation belt. Using the Radiation Belt Environment model, we try to reproduce the observed dropout features in both relativistic and subrelativistic electrons. We found that there are local time dependences in the dropout for both observation and simulation in subrelativistic electrons: (1) particle loss begins from nightside and propagates into dayside and (2) resupply starts from near dawn magnetic local time . . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021085 Available at: http://doi.wiley.com/10.1002/2015JA021085
More Details
Authors: Jaynes A. N., Lessard M. R., Takahashi K., Ali A. F., Malaspina D. M., et al.
Title: Correlated Pc4-5 ULF waves, whistler-mode chorus and pulsating aurora observed by the Van Allen Probes and ground-based systems
Abstract: Theory and observations have linked equatorial VLF waves with pulsating aurora for decades, invoking the process of pitch-angle scattering of 10's keV electrons in the equatorial magnetosphere. Recently published satellite studies have strengthened this argument, by showing strong correlation between pulsating auroral patches and both lower-band chorus and 10's keV electron modulation in the vicinity of geosynchronous orbit. Additionally, a previous link has been made between Pc4-5 compressional pulsations and modulation of whistler-mode chorus using THEMIS. In the current study, we present simultaneous in-situ observations of structured chorus waves and an apparent field line resonance (in the Pc4-5 range) as a result of a substorm injection, observed by Van Allen Probes, along with groun. . .
Date: 07/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021380 Available at: http://doi.wiley.com/10.1002/2015JA021380
More Details
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Disappearance of plasmaspheric hiss following interplanetary shock
Abstract: Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetop. . .
Date: 03/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063906 Available at: http://doi.wiley.com/10.1002/2015GL063906
More Details
Authors: Turner D. L., Claudepierre S G, Fennell J. F., O'Brien T P, Blake J B, et al.
Title: Energetic electron injections deep into the inner magnetosphere associated with substorm activity
Abstract: From a survey of the first nightside season of NASA's Van Allen Probes mission (Dec/2012 – Sep/2013), 47 energetic (10s to 100s of keV) electron injection events were found at L-shells ≤ 4, all of which are deeper than any previously reported substorm-related injections. Preliminary details from these events are presented, including how: all occurred shortly after dipolarization signatures and injections were observed at higher L-shells; the deepest observed injection was at L~2.5; and, surprisingly, L≤4 injections are limited in energy to ≤250 keV. We present a detailed case study of one example event revealing that the injection of electrons down to L~3.5 was different from injections observed at higher L and likely resulted from drift resonance with a fast magnetosonic wave in t. . .
Date: 02/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063225 Available at: http://doi.wiley.com/10.1002/2015GL063225
More Details
Authors: Zhao H., Li X, Baker D N, Fennell J. F., Blake J B, et al.
Title: The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements
Abstract: Enabled by the comprehensive measurements from the MagEIS, HOPE, and RBSPICE instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher energy protons. During the storm main phase, ions with energies < 50 keV contribute more significantly to the ring current than those with higher energies; while the higher energy protons dominate during the recovery phase and quiet times. The enhancements of higher energy proton fluxes as well as energy content generally occur later than those of lower. . .
Date: 08/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021533 Available at: http://doi.wiley.com/10.1002/2015JA021533
More Details
Authors: Chaston C. C., Bonnell J. W., Wygant J R, Kletzing C A, Reeves G D, et al.
Title: Extreme ionospheric ion energization and electron heating in Alfvén waves in the storm-time inner magnetosphere
Abstract: We report measurements of energized outflowing/bouncing ionospheric ions and heated electrons in the inner magnetosphere during a geomagnetic storm. The ions arrive in the equatorial plane with pitch angles that increase with energy over a range from tens of eV to > 50 keV while the electrons are field-aligned up to ~1 keV. These particle distributions are observed during intervals of broadband low frequency electromagnetic field fluctuations consistent with a Doppler-shifted spectrum of kinetic Alfvén waves and kinetic field-line resonances. The fluctuations extend from L≈3 out to the apogee of the Van Allen Probes spacecraft at L≈6.5. They thereby span most of the L-shell range occupied by the ring current. These measurements suggest a model for ionospheric ion outflow and energizat. . .
Date: 12/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL066674 Available at: http://doi.wiley.com/10.1002/2015GL066674http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015GL066674
More Details
Authors: Motoba T., Ohtani S, Anderson B J, Korth H., Mitchell D., et al.
Title: On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations
Abstract: Magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0–5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arc location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 8707 - 8722 DOI: 10.1002/jgra.v120.1010.1002/2015JA021676 Available at: http://doi.wiley.com/10.1002/jgra.v120.10http://doi.wiley.com/10.1002/2015JA021676http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021676
More Details
Authors: Nosé M., Oimatsu S., Keika K, Kletzing C A, Kurth W S, et al.
Title: Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations
Abstract: We study the formation process of an oxygen torus during the 12–15 November 2012 magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate the local plasma mass density (ρL) and the local electron number density (neL) from the resonant frequencies of standing Alfvén waves and the upper hybrid resonance band. The average ion mass (M) can be calculated by M ∼ ρL/neL under the assumption of quasi-neutrality of plasma. During the storm recovery phase, both Probe A and Probe B observe the oxygen torus at L = 3.0–4.0 and L = 3.7–4.5, respectively, on the morning side. The oxygen torus has M = 4.5–8 amu and extends around the plasmapause that is identified at L∼3.2–3.9. We find that during the initial phase, M is 4–7 amu throughout . . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020593 Available at: http://doi.wiley.com/10.1002/2014JA020593
More Details
Authors: Hwang K.-J., Sibeck D G, Fok M.-C. H., Zheng Y., Nishimura Y., et al.
Title: The global context of the 14 November, 2012 storm event
Abstract: From 2 to 5 UT on 14 November, 2012, the Van Allen Probes observed repeated particle flux dropouts during the main phase of a geomagnetic storm as the satellites traversed the post-midnight to dawnside inner magnetosphere. Each flux dropout corresponded to an abrupt change in the magnetic topology, i.e., from a more dipolar configuration to a configuration with magnetic field lines stretched in the dawn-dusk direction. Geosynchronous GOES spacecraft located in the dusk and near-midnight sectors and the LANL constellation with wide local time coverage also observed repeated flux dropouts and stretched field lines with similar occurrence patterns to those of the Van Allen Probe events. THEMIS recorded multiple transient abrupt expansions of the evening-side magnetopause ~20–30 min prior to. . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020826 Available at: http://doi.wiley.com/10.1002/2014JA020826
More Details

Pages