Found 5 results
Filters: Author is Milling, D. K.  [Clear All Filters]
Authors: Mann I. R., Ozeke L. G., Morley S. K., Murphy K. R., Claudepierre S G, et al.
Title: Reply to 'The dynamics of Van Allen belts revisited'
Abstract: N/A
Date: 02/2019 Publisher: Nature Physics Pages: 103 - 104 DOI: 10.1038/nphys4351 Available at:
More Details
Authors: Mann I. R., Ozeke L. G., Murphy K. R., Claudepierre S G, Turner D. L., et al.
Title: Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt
Abstract: Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave–particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. Using a datadriven, time-dependent specification of ultra-low-frequency (ULF) waves we show for the first time how the third radiation belt is established as a simple, elegant consequence o. . .
Date: 06/2016 Publisher: Nature Physics DOI: 10.1038/nphys3799 Available at:
More Details
Authors: Usanova M. E., Drozdov A., Orlova K., Mann I. R., Shprits Y., et al.
Title: Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground-based and Van Allen Probes observations
Abstract: We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch angle scattering of relativistic and ultrarelativistic electrons during the recovery phase of a moderate geomagnetic storm on 11 October 2012. The EMIC wave activity was observed in situ on the Van Allen Probes and conjugately on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity throughout an extended 18 h interval. However, neither enhanced precipitation of >0.7 MeV electrons nor reductions in Van Allen Probe 90° pitch angle ultrarelativistic electron flux were observed. Computed radiation belt electron pitch angle diffusion rates demonstrate that rapid pitch angle diffusion is confined to low pitch angles and cannot reach 90°. For the first time, from both obse. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1375 - 1381 DOI: 10.1002/2013GL059024 Available at:
More Details
Authors: Mann I. R., Usanova M. E., Murphy K., Robertson M. T., Milling D. K., et al.
Title: Spatial localization and ducting of EMIC waves: Van Allen Probes and ground-based observations
Abstract: On 11 October 2012, during the recovery phase of a moderate geomagnetic storm, an extended interval (> 18 h) of continuous electromagnetic ion cyclotron (EMIC) waves was observed by Canadian Array for Real-time Investigations of Magnetic Activity and Solar-Terrestrial Environment Program induction coil magnetometers in North America. At around 14:15 UT, both Van Allen Probes B and A (65° magnetic longitude apart) in conjunction with the ground array observed very narrow (ΔL ~ 0.1–0.4) left-hand polarized EMIC emission confined to regions of mass density gradients at the outer edge of the plasmasphere at L ~ 4. EMIC waves were seen with complex polarization patterns on the ground, in good agreement with model results from Woodroffe and Lysak (2012) and consistent with Earth's . . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 785 - 792 DOI: 10.1002/2013GL058581 Available at:
More Details
Authors: Mann Ian R., Lee E. A., Claudepierre S G, Fennell J. F., Degeling A., et al.
Title: Discovery of the action of a geophysical synchrotron in the Earth’s Van Allen radiation belts
Abstract: Although the Earth’s Van Allen radiation belts were discovered over 50 years ago, the dominant processes responsible for relativistic electron acceleration, transport and loss remain poorly understood. Here we show evidence for the action of coherent acceleration due to resonance with ultra-low frequency waves on a planetary scale. Data from the CRRES probe, and from the recently launched multi-satellite NASA Van Allen Probes mission, with supporting modeling, collectively show coherent ultra-low frequency interactions which high energy resolution data reveals are far more common than either previously thought or observed. The observed modulations and energy-dependent spatial structure indicate a mode of action analogous to a geophysical synchrotron; this new mode of response represents . . .
Date: 11/2013 Publisher: Nature Communications DOI: 10.1038/ncomms3795 Available at:
More Details