Found 5 results
Filters: Author is Cunningham, G. S.  [Clear All Filters]
Authors: Ripoll J.‐F., Farges T., Lay E. H., and Cunningham G. S.
Title: Local and Statistical Maps of Lightning‐Generated Wave Power Density Estimated at the Van Allen Probes Footprints From the World‐Wide Lightning Location Network Database
Abstract: We propose a new method that uses the World‐Wide Lightning Location Network (WWLLN) to estimate both the local and the drift lightning power density at the Van Allen Probes footprints during 4.3 years (~2 × 108 strokes.). The ratio of the drift power density to the local power density defines a time‐resolved WWLLN‐based model of lightning‐generated wave (LGW) power density ratio, RWWLLN. RWWLLNis computed every ~34 s. This ratio multiplied by the time‐resolved LGW intensity measured by the Probes allows direct computation of pitch angle diffusion coefficients used in radiation belt codes. Statistical analysis shows the median power density ratio is urn:x-wiley:00948276:media:grl58808:grl58808-math-0001 over the Americas. Elsewhere, urn:x-wiley:00948276:media:grl58808:grl58808-ma. . .
Date: 03/2019 Publisher: Geophysical Research Letters Pages: 4122 - 4133 DOI: 10.1029/2018GL081146 Available at:
More Details
Authors: Ripoll J. F., Loridan V., Cunningham G. S., Reeves G D, and Shprits Y Y
Title: On the Time Needed to Reach an Equilibrium Structure of the Radiation Belts
Abstract: In this study, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3 and 6. We find that the equilibrium states at moderately low Kp, when plotted vs L-shell (L) and energy (E), display the same interesting S-shape for the inner edge of the outer belt as recently observed by the Van Allen Probes. The S-shape is also produced as the radiation belts dynamically evolve toward the equilibrium state when initialized to simulate the buildup after a massive dropout or to simulate loss due to outward diffusion from a saturated state. Physically, this shape,. . .
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022207 Available at:
More Details
Authors: Reeves G D, Spence H E, Henderson M G, Tu W., Cunningham G. S., et al.
Title: Acceleration and loss driven by VLF chorus: Van Allen Probes observations and DREAM model results
Abstract: For over a decade now we have understood the response of the Earth's radiation belts to solar wind driving are a delicate balance of acceleration and loss processes. Theory has shown that the interaction of relativistic electrons with VLF whistler mode chorus can produce both energization through momentum diffusion and loss through pitch angle diffusion. Recent results from the Van Allen Probes mission has confirmed observationally that chorus can produce both acceleration and loss. The Van Allen Probes satellites are able to measure all the critical particle populations and wave fields with unprecedented precision and resolution but only at the two spacecraft locations. Those spatially-localized observations can be extended globally using three-dimensional diffusion codes such as the DREA. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929879 Available at:
More Details
Authors: Ripoll J.-F., Albert J M, and Cunningham G. S.
Title: Electron lifetimes from narrowband wave-particle interactions within the plasmasphere
Abstract: This paper is devoted to the systematic study of electron lifetimes from narrowband wave-particle interactions within the plasmasphere. It relies on a new formulation of the bounce-averaged quasi-linear pitch angle diffusion coefficients parameterized by a single frequency, ω, and wave normal angle, θ. We first show that the diffusion coefficients scale with ω/Ωce, where Ωce is the equatorial electron gyrofrequency, and that maximal pitch angle diffusion occurs along the line α0 = π/2–θ, where α0 is the equatorial pitch angle. Lifetimes are computed for L shell values in the range [1.5, 3.5] and energies, E, in the range [0.1, 6] MeV as a function of frequency and wave normal angle. The maximal pitch angle associated with a given lifetime is also given, revealing the frequen. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020217 Available at:
More Details
Authors: Tu Weichao, Cunningham G. S., Chen Y., Morley S. K., Reeves G D, et al.
Title: Event-specific chorus wave and electron seed population models in DREAM3D using the Van Allen Probes
Abstract: The DREAM3D diffusion model is applied to Van Allen Probes observations of the fast dropout and strong enhancement of MeV electrons during the October 2012 “double-dip” storm. We show that in order to explain the very different behavior in the two “dips,” diffusion in all three dimensions (energy, pitch angle, and L*) coupled with data-driven, event-specific inputs, and boundary conditions is required. Specifically, we find that outward radial diffusion to the solar wind-driven magnetopause, an event-specific chorus wave model, and a dynamic lower-energy seed population are critical for modeling the dynamics. In contrast, models that include only a subset of processes, use statistical wave amplitudes, or rely on inward radial diffusion of a seed population, perform poorly. The resu. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1359 - 1366 DOI: 10.1002/2013GL058819 Available at:
More Details