Biblio

Found 17 results
Filters: Author is Claudepierre, Seth G.  [Clear All Filters]
2019
Authors: Shi Run, Li Wen, Ma Qianli, Green Alex, Kletzing Craig A., et al.
Title: Properties of Whistler Mode Waves in Earth's Plasmasphere and Plumes
Abstract: Whistler mode wave properties inside the plasmasphere and plumes are systematically investigated using 5‐year data from Van Allen Probes. The occurrence and intensity of whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic local time, L, and AE. Based on the dependence of the wave normal angle and Poynting flux direction on L shell and normalized wave frequency to electron cyclotron frequency (fce), whistler mode waves are categorized into four types. Type I: ~0.5 fce with oblique wave normal angles mostly in plumes; Type II: 0.01–0.5 fce with small wave normal angles in the outer plasmasphere or inside plumes; Type III: <0.01 fce with oblique wave normal angles mostly within the plasmasphere or plumes; Type IV: 0.05–0.5 fce with oblique wave normal angl. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026041 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026041
More Details
2018
Authors: Murphy Kyle R., Inglis Andrew R., Sibeck David G., Rae Jonathan, Watt Clare E. J., et al.
Title: Determining the mode, frequency, and azimuthal wave number of ULF waves during a HSS and moderate geomagnetic storm
Abstract: Ultra‐low frequency (ULF) waves play a fundamental role in the dynamics of the inner‐magnetosphere and outer radiation belt during geomagnetic storms. Broadband ULF wave power can transport energetic electrons via radial diffusion and discrete ULF wave power can energize electrons through a resonant interaction. Using observations from the Magnetospheric Multiscale (MMS) mission, we characterize the evolution of ULF waves during a high‐speed solar wind stream (HSS) and moderate geomagnetic storm while there is an enhancement of the outer radiation belt. The Automated Flare Inference of Oscillations (AFINO) code is used to distinguish discrete ULF wave power from broadband wave power during the HSS. During periods of discrete wave power and utilizing the close separation of the MMS sp. . .
Date: 05/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA024877 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2017JA024877
More Details
Authors: Shumko Mykhaylo, Turner Drew L, O'Brien T P, Claudepierre Seth G., Sample John, et al.
Title: Evidence of Microbursts Observed Near the Equatorial Plane in the Outer Van Allen Radiation Belt
Abstract: We present the first evidence of electron microbursts observed near the equatorial plane in Earth's outer radiation belt. We observed the microbursts on March 31st, 2017 with the Magnetic Electron Ion Spectrometer and RBSP Ion Composition Experiment on the Van Allen Probes. Microburst electrons with kinetic energies of 29‐92 keV were scattered over a substantial range of pitch angles, and over time intervals of 150‐500 ms. Furthermore, the microbursts arrived without dispersion in energy, indicating that they were recently scattered near the spacecraft. We have applied the relativistic theory of wave‐particle resonant diffusion to the calculated phase space density, revealing that the observed transport of microburst electrons is not consistent with the hypothesized quasi‐linear ap. . .
Date: 07/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL078451 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL078451
More Details
Authors: Li Li, Zhou Xu-Zhi, Omura Yoshiharu, Wang Zi-Han, Zong Qiu-Gang, et al.
Title: Nonlinear drift resonance between charged particles and ultra-low frequency waves: Theory and Observations
Abstract: In Earth's inner magnetosphere, electromagnetic waves in the ultra‐low frequency (ULF) range play an important role in accelerating and diffusing charged particles via drift resonance. In conventional drift‐resonance theory, linearization is applied under the assumption of weak wave‐particle energy exchange so particle trajectories are unperturbed. For ULF waves with larger amplitudes and/or durations, however, the conventional theory becomes inaccurate since particle trajectories are strongly perturbed. Here, we extend the drift‐resonance theory into a nonlinear regime, to formulate nonlinear trapping of particles in a wave‐carried potential well, and predict the corresponding observable signatures such as rolled‐up structures in particle energy spectrum. After considering how. . .
Date: 08/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL079038 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL079038
More Details
Authors: Takahashi Kazue, Oimatsu Satoshi, é Masahito, Min Kyungguk, Claudepierre Seth G., et al.
Title: Van Allen Probes Observations of Second Harmonic Poloidal Standing Alfvén Waves
Abstract: Long-lasting second-harmonic poloidal standing Alfvén waves (P2 waves) were observed by the twin Van Allen Probes (Radiation Belt Storm Probes, or RBSP) spacecraft in the noon sector of the plasmasphere, when the spacecraft were close to the magnetic equator and had a small azimuthal separation. Oscillations of proton fluxes at the wave frequency (∼10 mHz) were also observed in the energy (W) range 50–300 keV. Using the unique RBSP orbital configuration, we determined the phase delay of magnetic field perturbations between the spacecraft with a 2nπ ambiguity. We then used finite gyroradius effects seen in the proton flux oscillations to remove the ambiguity and found that the waves were propagating westward with an azimuthal wave number (m) of ∼−200. The phase of the proton flux . . .
Date: 01/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024869 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024869/full
More Details
2017
Authors: Wang Chih-Ping, Thorne Richard, Liu Terry Z., Hartinger Michael D., Nagai Tsugunobu, et al.
Title: A multi-spacecraft event study of Pc5 ultra low frequency waves in the magnetosphere and their external drivers
Abstract: We investigate a quiet-time event of magnetospheric Pc5 ultra low frequency (ULF) waves and their likely external drivers using multiple spacecraft observations. Enhancements of electric and magnetic field perturbations in two narrow frequency bands, 1.5-2 mHz and 3.5-4 mHz, were observed over a large radial distance range from r ~5 to 11 RE. During the first half of this event, perturbations were mainly observed in the transverse components and only in the 3.5-4 mHz band. In comparison, enhancements were stronger during the second half in both transverse and compressional components and in both frequency bands. No indication of field line resonances was found for these magnetic field perturbations. Perturbations in these two bands were also observed in the magnetosheath, but not in the so. . .
Date: 04/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023610 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023610/full
More Details
Authors: Min Kyungguk, Takahashi Kazue, Ukhorskiy Aleksandr Y., Manweiler Jerry W., Spence Harlan E., et al.
Title: Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector
Abstract: This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that (1) the observed waves are a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be ∼100; (2) the magnetic fi. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics Pages: 3013-3-39 DOI: 10.1002/2016JA023770 Available at: onlinelibrary.wiley.com/doi/10.1002/2016JA023770/full
More Details
2016
Authors: Maldonado Armando A., Chen Lunjin, Claudepierre Seth G., Bortnik Jacob, Thorne Richard M, et al.
Title: Electron butterfly distribution modulation by magnetosonic waves
Abstract: The butterfly pitch angle distribution is observed as a dip in an otherwise normal distribution of electrons centered about αeq=90°. During storm times, the formation of the butterfly distribution on the nightside magnetosphere has been attributed to L shell splitting combined with magnetopause shadowing and strong positive radial flux gradients. It has been shown that this distribution can be caused by combined chorus and magnetosonic wave scattering where the two waves work together but at different local times. Presented in our study is an event on 21 August 2013, using Van Allen Probe measurements, where a butterfly distribution formation is modulated by local magnetosonic coherent magnetosonic waves intensity. Transition from normal to butterfly distributions coincides with rising m. . .
Date: 04/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL068161 Available at: http://doi.wiley.com/10.1002/2016GL068161http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2016GL068161http://api.wiley.com/onlinelibrary/chorus/v1/articles/10.1002%2F2016GL068161
More Details
Authors: Xia Zhiyang, Chen Lunjin, Dai Lei, Claudepierre Seth G., Chan Anthony A, et al.
Title: Modulation of chorus intensity by ULF waves deep in the inner magnetosphere
Abstract: Previous studies have shown that chorus wave intensity can be modulated by Pc4-Pc5 compressional ULF waves. In this study, we present Van Allen Probes observation of ULF wave modulating chorus wave intensity, which occurred deep in the magnetosphere. The ULF wave shows fundamental poloidal mode signature and mirror mode compressional nature. The observed ULF wave can modulate not only the chorus wave intensity but also the distribution of both protons and electrons. Linear growth rate analysis shows consistence with observed chorus intensity variation at low frequency (f <∼ 0.3fce), but cannot account for the observed higher-frequency chorus waves, including the upper band chorus waves. This suggests the chorus waves at higher-frequency ranges require nonlinear mechanisms. In addition, w. . .
Date: 09/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL070280 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2016GL070280/full
More Details
2015
Authors: Reeves Geoffrey D, Friedel Reiner H W, Larsen Brian A., Skoug Ruth M., Funsten Herbert O., et al.
Title: Energy dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions.
Abstract: We present observations of the radiation belts from the HOPE and MagEIS particle detectors on the Van Allen Probes satellites that illustrate the energy-dependence and L-shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on March 1 in more detail. The observations show: (a) At all L-shells, lower-energy electrons are enhanced more often than higher energies; (b) Events that fill the slot region are more common at lower energies; (c) Enhancements of electrons in the inner zone are more common at lower energies; and (d) Even when events do not fully fill the slot region, enhancements at lower-energies tend to extend to lower L-shells than higher energies. During enhancement events the outer zone extends to lower L-shells at lower energie. . .
Date: 12/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021569 Available at: http://doi.wiley.com/10.1002/2015JA021569http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021569
More Details
Authors: Zhou Xu-Zhi, Wang Zi-Han, Zong Qiu-Gang, Claudepierre Seth G., Mann Ian R., et al.
Title: Imprints of impulse-excited hydromagnetic waves on electrons in the Van Allen radiation belts
Abstract: Ultralow frequency electromagnetic oscillations, interpreted as standing hydromagnetic waves in the magnetosphere, are a major energy source that accelerates electrons to relativistic energies in the Van Allen radiation belt. Electrons can rapidly gain energy from the waves when they resonate via a process called drift resonance, which is observationally characterized by energy-dependent phase differences between electron flux and electromagnetic oscillations. Such dependence has been recently observed and interpreted as spacecraft identifications of drift resonance electron acceleration. Here we show that in the initial wave cycles, the observed phase relationship differs from that characteristic of well-developed drift resonance. We further examine the differences and find that they are . . .
Date: 08/2015 Publisher: Geophysical Research Letters Pages: 6199 - 6204 DOI: 10.1002/grl.v42.1510.1002/2015GL064988 Available at: http://doi.wiley.com/10.1002/grl.v42.15http://doi.wiley.com/10.1002/2015GL064988
More Details
Authors: Skov Tamitha Mulligan, Fennell Joseph F., Roeder James L., Blake Bernard, and Claudepierre Seth G.
Title: Internal Charging Hazards in Near-Earth Space During Solar Cycle 24 Maximum: Van Allen Probes Measurements
Abstract: The Van Allen Probes mission provides an unprecedented opportunity to make detailed measurements of electrons and protons in the inner magnetosphere during the weak solar maximum period of cycle 24. The MagEIS suite of sensors measures energy spectra and fluxes of charged particles in the space environment. The calculations show that these fluxes result in electron deposition rates high enough to cause internal charging. We use omnidirectional fluxes of electrons and protons to calculate the dose under varying materials and thicknesses of shielding. We show examples of charge deposition rates during the times of nominal and high levels of penetrating fluxes in the inner magnetosphere covering the period from the beginning of 2013 through mid-2014. These charge deposition rates are related . . .
Date: 09/2015 Publisher: IEEE Transactions on Plasma Science Pages: 3070 - 3074 DOI: 10.1109/TPS.2015.2468214 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7247811http://xplorestaging.ieee.org/ielx7/27/7247791/07247811.pdf?arnumber=7247811
More Details
Authors: Malaspina David M., Claudepierre Seth G., Takahashi Kazue, Jaynes Allison N., Elkington Scot R, et al.
Title: Kinetic Alfvén Waves and Particle Response Associated with a Shock-Induced, Global ULF Perturbation of the Terrestrial Magnetosphere
Abstract: On 2 October 2013, the arrival of an interplanetary shock compressed the Earth's magnetosphere and triggered a global ULF (ultra low frequency) oscillation. The Van Allen Probe B spacecraft observed this large-amplitude ULF wave in situ with both magnetic and electric field data. Broadband waves up to approximately 100 Hz were observed in conjunction with, and modulated by, this ULF wave. Detailed analysis of fields and particle data reveals that these broadband waves are Doppler-shifted kinetic Alfvén waves. This event suggests that magnetospheric compression by interplanetary shocks can induce abrupt generation of kinetic Alfvén waves over large portions of the inner magnetosphere, potentially driving previously unconsidered wave-particle interactions throughout the inner magnetosphere. . .
Date: 11/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL065935 Available at: http://doi.wiley.com/10.1002/2015GL065935http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015GL065935
More Details
2014
Authors: Dai Lei, Wygant John R., Cattell Cynthia A., Thaller Scott, Kersten Kris, et al.
Title: Evidence for injection of relativistic electrons into the Earth's outer radiation belt via intense substorm electric fields
Abstract: Observation and model results accumulated in the last decade indicate that substorms can promptly inject relativistic ‘killer’ electrons (≥MeV) in addition to 10–100 keV subrelativistic populations. Using measurements from Cluster, Polar, LANL, and GOES satellites near the midnight sector, we show in two events that intense electric fields, as large as 20 mV/m, associated with substorm dipolarization are associated with injections of relativistic electrons into the outer radiation belt. Enhancements of hundreds of keV electrons at dipolarization in the magnetotail can account for the injected MeV electrons through earthward transport. These observations provide evidence that substorm electric fields inject relativistic electrons by transporting magnetotail electrons into the outer . . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1133 - 1141 DOI: 10.1002/2014GL059228 Available at: http://doi.wiley.com/10.1002/2014GL059228
More Details
Authors: Chen Yue, Friedel Reiner H W, Henderson Michael G., Claudepierre Seth G., Morley Steven K., et al.
Title: REPAD: An empirical model of pitch angle distributions for energetic electrons in the Earth's outer radiation belt
Abstract: We have recently conducted a statistical survey on pitch angle distributions of energetic electrons trapped in the Earth's outer radiation belt, and a new empirical model was developed based upon survey results. This model—relativistic electron pitch angle distribution (REPAD)—aims to present statistical pictures of electron equatorial pitch angle distributions, instead of the absolute flux levels, as a function of energy, L shell, magnetic local time, and magnetic activity. To quantify and facilitate this statistical survey, we use Legendre polynomials to fit long-term in situ directional fluxes observed near the magnetic equator from three missions: CRRES, Polar, and LANL-97A. As the first of this kind of model, REPAD covers the whole outer belt region, providing not only the mean an. . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1693 - 1708 DOI: 10.1002/jgra.v119.310.1002/2013JA019431 Available at: http://doi.wiley.com/10.1002/jgra.v119.3http://doi.wiley.com/10.1002/2013JA019431
More Details
Authors: Ni Binbin, Li Wen, Thorne Richard M, Bortnik Jacob, Ma Qianli, et al.
Title: Resonant scattering of energetic electrons by unusual low-frequency hiss
Abstract: We quantify the resonant scattering effects of the unusual low-frequency dawnside plasmaspheric hiss observed on 30 September 2012 by the Van Allen Probes. In contrast to normal (~100–2000 Hz) hiss emissions, this unusual hiss event contained most of its wave power at ~20–200 Hz. Compared to the scattering by normal hiss, the unusual hiss scattering speeds up the loss of ~50–200 keV electrons and produces more pronounced pancake distributions of ~50–100 keV electrons. It is demonstrated that such unusual low-frequency hiss, even with a duration of a couple of hours, plays a particularly important role in the decay and loss process of energetic electrons, resulting in shorter electron lifetimes for ~50–400 keV electrons than normal hiss, and should be carefully incorpora. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1854 - 1861 DOI: 10.1002/2014GL059389 Available at: http://doi.wiley.com/10.1002/2014GL059389
More Details
Authors: Yu Yiqun, Jordanova Vania, Welling Dan, Larsen Brian, Claudepierre Seth G., et al.
Title: The role of ring current particle injections: Global simulations and Van Allen Probes observations during 17 March 2013 storm
Abstract: We simulate substorm injections observed by the Van Allen Probes during the 17 March 2013 storm using a self-consistent coupling between the ring current model RAM-SCB and the global MHD model BATS-R-US. This is a significant advancement compared to previous studies that used artificially imposed electromagnetic field pulses to mimic substorm dipolarization and associated inductive electric field. Several substorm dipolarizations and injections are reproduced in the MHD model, in agreement with the timing of shape changes in the AE/AL index. The associated inductive electric field transports plasma sheet plasma to geostationary altitudes, providing the boundary plasma source to the ring current model. It is found that impulsive plasma sheet injections, together with a large-scale convectio. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1126 - 1132 DOI: 10.1002/2014GL059322 Available at: http://doi.wiley.com/10.1002/2014GL059322
More Details