Found 16 results
Filters: Author is Kletzing, Craig  [Clear All Filters]
Authors: Qin Murong, Hudson Mary, Li Zhao, Millan Robyn, Shen Xiaochen, et al.
Title: Investigating Loss of Relativistic Electrons Associated With EMIC Waves at Low L Values on 22 June 2015
Abstract: In this study, rapid loss of relativistic radiation belt electrons at low L* values (2.4–3.2) during a strong geomagnetic storm on 22 June 2015 is investigated along with five possible loss mechanisms. Both the particle and wave data are obtained from the Van Allen Probes. Duskside H+ band electromagnetic ion cyclotron (EMIC) waves were observed during a rapid decrease of relativistic electrons with energy above 5.2 MeV occurring outside the plasmasphere during extreme magnetopause compression. Lower He+ composition and enriched O+ composition are found compared to typical values assumed in other studies of cyclotron resonant scattering of relativistic electrons by EMIC waves. Quantitative analysis demonstrates that even with the existence of He+ band EMIC waves, it is the H+ band EMIC w. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025726 Available at:
More Details
Authors: Kubota Yuko, Omura Yoshiharu, Kletzing Craig, and Reeves Geoff
Title: Generation process of large-amplitude upper band chorus emissions observed by Van Allen Probes
Abstract: We analyze large‐amplitude upper‐band chorus emissions measured near the magnetic equator by the EMFISIS (Electric and Magnetic Field Instrument Suite and Integrated Science) instrument package onboard the Van Allen Probes. In setting up the parameters of source electrons exciting the emissions based on theoretical analyses and observational results measured by the HOPE (Helium Oxygen Proton Electron) instrument, we calculate threshold and optimum amplitudes with the nonlinear wave growth theory. We find that the optimum amplitude is larger than the threshold amplitude obtained in the frequency range of the chorus emissions and that the wave amplitudes grow between the threshold and optimum amplitudes. In the frame of the wave growth process, the nonlinear growth rates are much greater. . .
Date: 04/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA024782 Available at:
More Details
Authors: Gupta Ananya, Kletzing Craig, Howk Robin, Kurth William, and Matheny Morgan
Title: Automated Identification and Shape Analysis of Chorus Elements in the Van Allen Radiation Belts
Abstract: An important goal of the Van Allen Probes mission is to understand wave-particle interaction by chorus emissions in terrestrial Van Allen radiation belts. To test models, statistical characterization of chorus properties, such as amplitude variation and sweep rates, is an important scientific goal. The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite provides measurements of wave electric and magnetic fields as well as DC magnetic fields for the Van Allen Probes mission. However, manual inspection across terabytes of EMFISIS data is not feasible and as such introduces human confirmation bias. We present signal processing techniques for automated identification, shape analysis, and sweep rate characterization of high-amplitude whistler-mode. . .
Date: 12/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA023949 Available at:
More Details
Authors: Yue Chao, Chen Lunjin, Bortnik Jacob, Ma Qianli, Thorne Richard M, et al.
Title: The characteristic response of whistler mode waves to interplanetary shocks
Abstract: Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at post-midnight to pre-noon sector, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude that chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron . . .
Date: 09/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024574 Available at:
More Details
Authors: Wang Chih-Ping, Thorne Richard, Liu Terry Z., Hartinger Michael D., Nagai Tsugunobu, et al.
Title: A multi-spacecraft event study of Pc5 ultra low frequency waves in the magnetosphere and their external drivers
Abstract: We investigate a quiet-time event of magnetospheric Pc5 ultra low frequency (ULF) waves and their likely external drivers using multiple spacecraft observations. Enhancements of electric and magnetic field perturbations in two narrow frequency bands, 1.5-2 mHz and 3.5-4 mHz, were observed over a large radial distance range from r ~5 to 11 RE. During the first half of this event, perturbations were mainly observed in the transverse components and only in the 3.5-4 mHz band. In comparison, enhancements were stronger during the second half in both transverse and compressional components and in both frequency bands. No indication of field line resonances was found for these magnetic field perturbations. Perturbations in these two bands were also observed in the magnetosheath, but not in the so. . .
Date: 04/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023610 Available at:
More Details
Authors: Martinez-Calderon Claudia, Shiokawa Kazuo, Miyoshi Yoshizumi, Keika Kunihiro, Ozaki Mitsunori, et al.
Title: ELF/VLF wave propagation at subauroral latitudes: Conjugate observation between the ground and Van Allen Probes A
Abstract: We report simultaneous observation of ELF/VLF emissions, showing similar spectral and frequency features, between a VLF receiver at Athabasca (ATH), Canada, (L = 4.3) and Van Allen Probes A (Radiation Belt Storm Probes (RBSP) A). Using a statistical database from 1 November 2012 to 31 October 2013, we compared a total of 347 emissions observed on the ground with observations made by RBSP in the magnetosphere. On 25 February 2013, from 12:46 to 13:39 UT in the dawn sector (04–06 magnetic local time (MLT)), we observed a quasiperiodic (QP) emission centered at 4 kHz, and an accompanying short pulse lasting less than a second at 4.8 kHz in the dawn sector (04–06 MLT). RBSP A wave data showed both emissions as right-hand polarized with their Poynting vector earthward to the Northern Hemisp. . .
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 5384 - 5393 DOI: 10.1002/jgra.v121.610.1002/2015JA022264 Available at:
More Details
Authors: Sarno-Smith Lois K., Liemohn Michael W., Skoug Ruth M., Santolík Ondrej, Morley Steven K., et al.
Title: Hiss or Equatorial Noise? Ambiguities in Analyzing Suprathermal Ion Plasma Wave Resonance
Abstract: Previous studies have shown that low energy ion heating occurs in the magnetosphere due to strong equatorial noise emission. Observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument recently determined there was a depletion in the 1-10 eV ion population in the post-midnight sector of Earth during quiet times at L < 3. The diurnal variation of equatorially mirroring 1-10 eV H+ ions between 2 < L < 3 is connected with similar diurnal variation in the electric field component of plasma waves ranging between 150 and 600 Hz. Measurements from the Van Allen Probes Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) data set are used to analyze waves of this frequency in near-Earth space. However, when we examine the polarization of the wave. . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022975 Available at:
More Details
Authors: Aryan Homayon, Sibeck David, Balikhin Michael, Agapitov Oleksiy, and Kletzing Craig
Title: Observation of chorus waves by the Van Allen Probes: Dependence on solar wind parameters and scale size
Abstract: Highly energetic electrons in the Earth's Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not onl. . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 7608 - 7621 DOI: 10.1002/jgra.v121.810.1002/2016JA022775 Available at:
More Details
Authors: Boardsen Scott A, Hospodarsky George B, Kletzing Craig, Engebretson Mark, Pfaff Robert F, et al.
Title: Survey of the Frequency Dependent Latitudinal Distribution of the Fast Magnetosonic Wave Mode from Van Allen Probes EMFISIS Wave Form Receiver Plasma Wave Analysis
Abstract: We present a statistical survey of the latitudinal structure of the fast magnetosonic wave mode detected by the Van Allen Probes spanning the time interval of 9/21/2012 to 8/1/2014. We show that statistically the latitudinal occurrence of the wave frequency (f) normalized by the local proton cyclotron frequency (fcP) has a distinct funnel shaped appearance in latitude about the magnetic equator similar to that found in case studies. By comparing the observed E/B ratios with the model E/B ratio, using the observed plasma density and background magnetic field magnitude as input to the model E/B ratio, we show that this mode is consistent with the extraordinary (whistler) mode at wave normal angles (θk) near 90°. Performing polarization analysis on synthetic waveforms composed from a superp. . .
Date: 02/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA021844 Available at:
More Details
Authors: Malaspina David M., Claudepierre Seth G., Takahashi Kazue, Jaynes Allison N., Elkington Scot R, et al.
Title: Kinetic Alfvén Waves and Particle Response Associated with a Shock-Induced, Global ULF Perturbation of the Terrestrial Magnetosphere
Abstract: On 2 October 2013, the arrival of an interplanetary shock compressed the Earth's magnetosphere and triggered a global ULF (ultra low frequency) oscillation. The Van Allen Probe B spacecraft observed this large-amplitude ULF wave in situ with both magnetic and electric field data. Broadband waves up to approximately 100 Hz were observed in conjunction with, and modulated by, this ULF wave. Detailed analysis of fields and particle data reveals that these broadband waves are Doppler-shifted kinetic Alfvén waves. This event suggests that magnetospheric compression by interplanetary shocks can induce abrupt generation of kinetic Alfvén waves over large portions of the inner magnetosphere, potentially driving previously unconsidered wave-particle interactions throughout the inner magnetosphere. . .
Date: 11/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL065935 Available at:
More Details
Authors: Takahashi Kazue, Waters Colin, Glassmeier Karl-Heinz, Kletzing Craig, Kurth William, et al.
Title: Multifrequency compressional magnetic field oscillations and their relation to multiharmonic toroidal mode standing Alfvén waves
Abstract: The power spectrum of the compressional component of magnetic fields observed by the Van Allen Probes spacecraft near the magnetospheric equator in the dayside plasmasphere sometimes exhibits regularly spaced multiple peaks at frequencies below 50 mHz. We show by detailed analysis of events observed on two separate days in early 2014 that the frequencies change smoothly with the radial distance of the spacecraft and appear at or very near the frequencies of the odd harmonics of mutiharmonic toroidal mode standing Alfvén waves seen in the azimuthal component of the magnetic field. Even though the compressional component had a low amplitude on one of the selected days, its spectral properties are highlighted by computing the ratio of the spectral powers of time series data obtained from two. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021780 Available at:
More Details
Authors: Dai Lei, Wang Chi, Duan Suping, He Zhaohai, Wygant John R., et al.
Title: Near-Earth Injection of MeV Electrons associated with Intense Dipolarization Electric Fields: Van Allen Probes observations
Abstract: Substorms generally inject 10s-100s keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the pre-midnight sector at L∼5.5, Van Allen Probes (RBSP)-A observed a large dipolarization electric field (50mV/m) over ∼40s and a dispersionless injection of electrons up to ∼3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the in. . .
Date: 07/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064955 Available at:
More Details
Authors: Dai Lei, Takahashi Kazue, Lysak Robert, Wang Chi, Wygant John R., et al.
Title: Storm-time occurrence and Spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: A Van Allen Probes Statistical study
Abstract: Poloidal ULF waves are capable of efficiently interacting with energetic particles in the ring current and the radiation belt. Using Van Allen Probes (RBSP) data from October 2012 to July 2014, we investigate the spatial distribution and storm-time occurrence of Pc4 (7-25 mHz) poloidal waves in the inner magnetosphere. Pc4 poloidal waves are sorted into two categories: waves with and without significant magnetic compressional components. Two types of poloidal waves have comparable occurrence rates, both of which are much higher during geomagnetic storms. The non-compressional poloidal waves mostly occur in the late recovery phase associated with an increase of Dst toward 0, suggesting that the decay of the ring current provides their free energy source. The occurrence of dayside compressio. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021134 Available at:
More Details
Authors: Takahashi Kazue, Denton Richard E, Kurth William, Kletzing Craig, Wygant John, et al.
Title: Externally driven plasmaspheric ULF waves observed by the Van Allen Probes
Abstract: We analyze data acquired by the Van Allen Probes on 8 November 2012, during a period of extended low geomagnetic activity, to gain new insight into plasmaspheric ultra-low-frequency (ULF) waves. The waves exhibited strong spectral power in the 5–40 mHzband and included multiharmonic toroidal waves visible up to the 11th harmonic, unprecedented in the plasmasphere. During this wave activity, the interplanetary magnetic field cone angle was small, suggesting that the waves were driven by broadband compressional ULF waves originating in the foreshock region. This source mechanism is supported by the tailward propagation of the compressional magnetic field perturbations at a phase velocity of a few hundred kilometers per second that is determined bythe cross phase analysis of data from the t. . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020373 Available at:
More Details
Authors: Yu Yiqun, Jordanova Vania, Welling Dan, Larsen Brian, Claudepierre Seth G., et al.
Title: The role of ring current particle injections: Global simulations and Van Allen Probes observations during 17 March 2013 storm
Abstract: We simulate substorm injections observed by the Van Allen Probes during the 17 March 2013 storm using a self-consistent coupling between the ring current model RAM-SCB and the global MHD model BATS-R-US. This is a significant advancement compared to previous studies that used artificially imposed electromagnetic field pulses to mimic substorm dipolarization and associated inductive electric field. Several substorm dipolarizations and injections are reproduced in the MHD model, in agreement with the timing of shape changes in the AE/AL index. The associated inductive electric field transports plasma sheet plasma to geostationary altitudes, providing the boundary plasma source to the ring current model. It is found that impulsive plasma sheet injections, together with a large-scale convectio. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1126 - 1132 DOI: 10.1002/2014GL059322 Available at:
More Details
Authors: Fu Xiangrong, Cowee Misa M., Friedel Reinhard H., Funsten Herbert O, Gary Peter, et al.
Title: Whistler Anisotropy Instabilities as the Source of Banded Chorus: Van Allen Probes Observations and Particle-in-Cell Simulations
Abstract: Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr < Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃ Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell (PIC) simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from HOPE instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron mod. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020364 Available at:
More Details