Biblio

Found 15 results
Filters: Author is Zhu, Hui  [Clear All Filters]
2019
Authors: He Zhaoguo, Chen Lunjin, Liu Xu, Zhu Hui, Liu Si, et al.
Title: Local Generation of High-Frequency Plasmaspheric Hiss Observed by Van Allen Probes
Abstract: The generation of a high‐frequency plasmaspheric hiss (HFPH) wave observed by Van Allen Probes is studied in this letter for the first time. The wave has a moderate power spectral density (∼10−6 nT2/Hz), with a frequency range extended from 2 to 10 kHz. The correlated observations of waves and particles indicate that HFPH is associated with the enhancement of electron flux during the substorm on 6 January 2014. Calculations of the wave linear growth rate driven by the fitted electron phase space density show that the electron distribution after the substorm onset is efficient for the HFPH generation. The energy of the contributing electrons is about 1–2 keV, which is consistent with the observation. These results support that the observed HFPH is likely to be generated locally insi. . .
Date: 01/2019 Publisher: Geophysical Research Letters Pages: 1141 - 1148 DOI: 10.1029/2018GL081578 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL081578
More Details
Authors: Zhu Hui, Chen Lunjin, Liu Xu, and Shprits Yuri Y
Title: Modulation of Locally Generated Equatorial Noise by ULF Wave
Abstract: In this paper we report a rare and fortunate event of fast magnetosonic (MS, also called equatorial noise) waves modulated by compressional ultralow frequency (ULF) waves measured by Van Allen Probes. The characteristics of MS waves, ULF waves, proton distribution, and their potential correlations are analyzed. The results show that ULF waves can modulate the energetic ring proton distribution and in turn modulate the MS generation. Furthermore, the variation of MS intensities is attributed to not only ULF wave activities but also the variation of background parameters, for example, number density. The results confirm the opinion that MS waves are generated by proton ring distribution and propose a new modulation phenomenon.
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026199 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026199
More Details
Authors: Zhu Hui, Gu Wenyao, and Chen Lunjin
Title: Statistical analysis on plasmatrough exohiss waves from the Van Allen Probes
Abstract: In this study using Van Allen Probe wave observations we investigate the statistical properties of exohiss waves, which are structureless whistler mode waves observed outside the plasmapause. The exohiss waves are identified based on the cold electron number density, frequency distribution, ellipticity, and wave normal angle. The statistical analysis on exohiss wave properties shows that exohiss waves prefer to occur over 3Date: 06/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026359 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026359
More Details
Authors: Zhu Hui, Liu Xu, and Chen Lunjin
Title: Triggered Plasmaspheric Hiss: Rising Tone Structures
Abstract: In this study, a rare hiss event observed by Van Allen Probe is reported and the possible generation is investigated based on wave and plasma measurements. The results suggest that the normal hiss (from 0.05fce to 0.5fce) with dominantly equatorward Poynting fluxes is locally generated by plasma sheet electrons via cyclotron instability. The low‐frequency band (from 30 Hz to 0.05fce) with a mixture of equatorward and poleward Poynting fluxes is probably due to multiple reflections inside the plasmasphere. Such difference in the two bands is confirmed by the calculation of minimum energy of resonant electrons and local growth rate. Moreover, the analysis on the fine structures of normal hiss waves shows that besides the expected incoherent structure (below 1 kHz), several rising tone elem. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082688 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082688
More Details
2018
Authors: Zhu Hui, Shprits Yuri Y, Chen Lunjin, Liu Xu, and Kellerman Adam C.
Title: An event on simultaneous amplification of exohiss and chorus waves associated with electron density enhancements
Abstract: Whistler mode exohiss are the structureless hiss waves observed outside the plasmapause with featured equatorward Poynting flux. An event of the amplification of exohiss as well as chorus waves was recorded by Van Allen Probes during the recovery phase of a weak geomagnetic storm. Amplitudes of both types of the waves showed a significant increase at the regions of electron density enhancements. It is found that the electrons resonant with exohiss and chorus showed moderate pitch‐angle anisotropies. The ratio of the number of electrons resonating with exohiss to total electron number presented in‐phase correlation with density variations, which suggests that exohiss can be amplified due to electron density enhancement in terms of cyclotron instability. The calculation of linear growth . . .
Date: 10/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA025023 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2017JA025023
More Details
2017
Authors: He Zhaoguo, Chen Lunjin, Zhu Hui, Xia Zhiyang, Reeves G D, et al.
Title: Multiple-satellite observation of magnetic dip event during the substorm on 10 October, 2013
Abstract: We present a multiple-satellite observation of the magnetic dip event during the substorm on October 10, 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the EMIC wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show that the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enr. . .
Date: 09/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074869 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL074869/full
More Details
2016
Authors: Gao Zhonglei, Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, et al.
Title: Intense low-frequency chorus waves observed by Van Allen Probes: Fine structures and potential effect on radiation belt electrons
Abstract: Frequency distribution is a vital factor in determining the contribution of whistler-mode chorus to radiation belt electron dynamics. Chorus is usually considered to occur in the frequency range 0.1–0.8 inline image (with the equatorial electron gyrofrequency inline image). We here report an event of intense low-frequency chorus with nearly half of wave power distributed below 0.1 inline image observed by Van Allen Probe A on 27 August 2014. This emission propagated quasi-parallel to the magnetic field and exhibited hiss-like signatures most of the time. The low-frequency chorus can produce the rapid loss of low-energy (∼0.1 MeV) electrons, different from the normal chorus. For high-energy (≥0.5 MeV) electrons, the low-frequency chorus can yield comparable momentum diffusion to tha. . .
Date: 02/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL067687 Available at: http://doi.wiley.com/10.1002/2016GL067687
More Details
Authors: Su Zhenpeng, Gao Zhonglei, Zhu Hui, Li Wen, Zheng Huinan, et al.
Title: Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013
Abstract: Radiation belt electron flux dropouts during the main phase of geomagnetic storms have received increasing attention in recent years. Here we focus on a rarely reported nonstorm time dropout event observed by Van Allen Probes on 24 September 2013. Within several hours, the radiation belt electron fluxes exhibited a significant (up to 2 orders of magnitude) depletion over a wide range of radial distances (L > 4.5), energies (∼500 keV to several MeV) and equatorial pitch angles (0°≤αe≤180°). STEERB simulations show that the relativistic electron loss in the region L = 4.5–6.0 was primarily caused by the pitch angle scattering of observed plasmaspheric hiss and electromagnetic ion cyclotron waves. Our results emphasize the complexity of radiation belt dynamics and the importance of. . .
Date: 07/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022546 Available at: http://doi.wiley.com/10.1002/2016JA022546
More Details
2015
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Disappearance of plasmaspheric hiss following interplanetary shock
Abstract: Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetop. . .
Date: 03/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063906 Available at: http://doi.wiley.com/10.1002/2015GL063906
More Details
Authors: Zhu Hui, Su Zhenpeng, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons
Abstract: Exohiss waves are whistler mode hiss observed in the plasmatrough region. We present a case study of exohiss waves and the corresponding background plasma distributions observed by the Van Allen Probes in the dayside low-latitude region. The analysis of wave Poynting fluxes, suprathermal electron fluxes and cold electron densities supports the scenario that exohiss leaks from the plasmasphere into the plasmatrough. Quasilinear calculations further reveal that exohiss can potentially cause the resonant scattering loss of radiation belt electrons ~Date: 02/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL062964 Available at: http://doi.wiley.com/10.1002/2014GL062964
More Details
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zong Q.-G., Zhou X.-Z., et al.
Title: Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons
Abstract: Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fl. . .
Date: 12/2015 Publisher: Nature Communications Pages: 10096 DOI: 10.1038/ncomms10096 Available at: http://www.nature.com/doifinder/10.1038/ncomms10096
More Details
2014
Authors: Su Zhenpeng, Xiao Fuliang, Zheng Huinan, and Zhu Hui
Title: Chorus-driven acceleration of radiation belt electrons in the unusual temporal/spatial regions
Abstract: Cyclotron resonance with whistler-mode chorus waves is an important mechanism for the local acceleration of radiation belt energetic electrons. Such acceleration process has been widely investigated during the storm times, and its favored region is usually considered to be the low-density plasmatrough with magnetic local time (MLT) from midnight through dawn to noon. Here we present two case studies on the chorus-driven acceleration of radiation belt electrons in some “unusual” temporal /spatial regions. (1) The first event recorded by the Van Allen Probes during the nonstorm times from 21 to 23 February 2013. Within two days, a new radiation belt centering around L=5.8 formed and gradually merged with the original outer belt. The corresponding relativistic electron fluxes increased by. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929875 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929875
More Details
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons
Abstract: Local acceleration driven by whistler mode chorus waves largely accounts for the enhancement of radiation belt relativistic electron fluxes, whose favored region is usually considered to be the plasmatrough with magnetic local time approximately from midnight through dawn to noon. On 2 October 2013, the Van Allen Probes recorded a rarely reported event of intense duskside lower band chorus waves (with power spectral density up to 10−3nT2/Hz) in the low-latitude region outside of L=5. Such chorus waves are found to be generated by the substorm-injected anisotropic suprathermal electrons and have a potentially strong acceleration effect on the radiation belt energetic electrons. This event study demonstrates the possibility of broader spatial regions with effective electron acceleration by. . .
Date: 06/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 4266 - 4273 DOI: 10.1002/jgra.v119.610.1002/2014JA019919 Available at: http://doi.wiley.com/10.1002/jgra.v119.6http://doi.wiley.com/10.1002/2014JA019919
More Details
Authors: Su Zhenpeng, Xiao Fuliang, Zheng Huinan, He Zhaoguo, Zhu Hui, et al.
Title: Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes
Abstract: Storm time electron radiation belt dynamics have been widely investigated for many years. Here we present a rarely reported nonstorm time event of electron radiation belt evolution observed by the Van Allen Probes during 21–24 February 2013. Within 2 days, a new belt centering around L=5.8 formed and gradually merged with the original outer belt, with the enhancement of relativistic electron fluxes by a factor of up to 50. Strong chorus waves (with power spectral density up to 10−4nT2/Hz) occurred in the region L>5. Taking into account the local acceleration driven by these chorus waves, the two-dimensional STEERB can approximately reproduce the observed energy spectrums at the center of the new belt. These results clearly illustrate the complexity of electron radiation belt behaviors . . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 229 - 235 DOI: 10.1002/2013GL058912 Available at: http://doi.wiley.com/10.1002/2013GL058912
More Details
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt
Abstract: We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by RBSP and THEMIS satellites, and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about 6 hours, with up to four orders of magnitude enhancement in the 30 keV-5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100% and 20% of the total subrelativistic (~0.1 MeV) and relativistic (2-5 MeV) electron . . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020709 Available at: http://doi.wiley.com/10.1002/2014JA020709
More Details