Found 2 results
Filters: Author is Kersten, K.  [Clear All Filters]
Authors: Thaller S. A., Wygant J R, Dai L., Breneman A.W., Kersten K., et al.
Title: Van Allen Probes investigation of the large scale duskward electric field and its role in ring current formation and plasmasphere erosion in the June 1, 2013 storm
Abstract: Using the Van Allen Probes we investigate the enhancement in the large scale duskward convection electric field during the geomagnetic storm (Dst ~ −120 nT) on June 1, 2013 and its role in ring current ion transport and energization, and plasmasphere erosion. During this storm, enhancements of ~1-2 mV/m in the duskward electric field in the co-rotating frame are observed down to L shells as low as ~2.3. A simple model consisting of a dipole magnetic field and constant, azimuthally westward, electric field is used to calculate the earthward and westward drift of 90° pitch angle ions. This model is applied to determine how far earthward ions can drift while remaining on Earth's night side, given the strength and duration of the convection electric field. The calculation based on this simp. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020875 Available at:
More Details
Authors: Malaspina D. M., Ergun R. E., Sturner A., Wygant J R, Bonnell J W, et al.
Title: Chorus waves and spacecraft potential fluctuations: Evidence for wave-enhanced photoelectron escape
Abstract: Chorus waves are important for electron energization and loss in Earth's radiation belts and inner magnetosphere. Because the amplitude and spatial distribution of chorus waves can be strongly influenced by plasma density fluctuations and spacecraft floating potential can be a diagnostic of plasma density, the relationship between measured potential and chorus waves is examined using Van Allen Probes data. While measured potential and chorus wave electric fields correlate strongly, potential fluctuation properties are found not to be consistent with plasma density fluctuations on the timescales of individual chorus wave packets. Instead, potential fluctuations are consistent with enhanced photoelectron escape driven by chorus wave electric fields. Enhanced photoelectron escape may result i. . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 236 - 243 DOI: 10.1002/2013GL058769 Available at:
More Details