Biblio

Found 10 results
Filters: Author is Breneman, Aaron W.  [Clear All Filters]
2019
Authors: Tyler E., Breneman A., Cattell C., Wygant J, Thaller S., et al.
Title: Statistical occurrence and distribution of high amplitude whistler-mode waves in the outer radiation belt
Abstract: We present the first statistical analysis with continuous data coverage and non‐averaged amplitudes of the prevalence and distribution of high‐amplitude (> 5 mV/m) whistler‐mode waves in the outer radiation belt using 5 years of Van Allen Probes data. These waves are most common above L=3.5 and between MLT of 0‐7 where they are present 1‐4% of the time. During high geomagnetic activity, high‐amplitude whistler‐mode wave occurrence rises above 30% in some regions. During these active times the plasmasphere erodes to lower L and high‐amplitude waves are observed at all L outside of it, with the highest occurrence at low L (3.5‐4) in the pre‐dawn sector. These results have important implications for modeling radiation belt particle interactions with chorus, as large‐amp. . .
Date: 02/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082292 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082292
More Details
2018
Authors: Hartinger M. D., Claudepierre S G, Turner D. L., Reeves G D, Breneman A., et al.
Title: Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels
Abstract: Electron flux measurements are an important diagnostic for interactions between ultralow‐frequency (ULF) waves and relativistic (∼1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh‐resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission—obtained using a data product that improves the energy resolution by roughly an order of magnitude—are crucial for understanding ULF wave‐particle interactions. In particular, the ultrahigh‐resolution measurements reveal a range of complex dynamics that cannot be resolved by standard measurements. Furthermore, the standard meas. . .
Date: 10/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL080291 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080291
More Details
2017
Authors: Cattell C., Breneman A., Colpitts C., Dombeck J., Thaller S., et al.
Title: Dayside response of the magnetosphere to a small shock compression: Van Allen Probes, Magnetospheric MultiScale, and GOES-13
Abstract: Observations from Magnetospheric MultiScale (~8 Re) and Van Allen Probes (~5 and 4 Re) show that the initial dayside response to a small interplanetary shock is a double-peaked dawnward electric field, which is distinctly different from the usual bipolar (dawnward and then duskward) signature reported for large shocks. The associated ExB flow is radially inward. The shock compressed the magnetopause to inside 8 Re, as observed by MMS, with a speed that is comparable to the ExB flow. The magnetopause speed and the ExB speeds were significantly less than the propagation speed of the pulse from MMS to the Van Allen Probes and GOES-13, which is consistent with the MHD fast mode. There were increased fluxes of energetic electrons up to several MeV. Signatures of drift echoes and response to ULF. . .
Date: 08/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074895 Available at: onlinelibrary.wiley.com/doi/10.1002/2017GL074895/full
More Details
Authors: Khazanov G. V., Boardsen S., Krivorutsky E. N., Engebretson M. J., Sibeck D., et al.
Title: Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B
Abstract: We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of ~0.86. We assume that the correlation is the result of LHFR wave generation by the ions' polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth . . .
Date: 01/2017 Publisher: Journal of Geophysical Research: Space Physics Pages: 449 - 463 DOI: 10.1002/2016JA022814 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022814/full
More Details
2016
Authors: Colpitts C. A., Cattell C. A., Engebretson M., Broughton M., Tian S., et al.
Title: Van Allen Probes observations of cross-scale coupling between electromagnetic ion cyclotron waves and higher-frequency wave modes
Abstract: We present observations of higher-frequency (~50–2500 Hz, ~0.1–0.7 fce) wave modes modulated at the frequency of colocated lower frequency (0.5–2 Hz, on the order of fci) waves. These observations come from the Van Allen Probes Electric Field and Waves instrument's burst mode data and represent the first observations of coupling between waves in these frequency ranges. The higher-frequency wave modes, typically whistler mode hiss and chorus or magnetosonic waves, last for a few to a few tens of seconds but are in some cases observed repeatedly over several hours. The higher-frequency waves are observed to be unmodulated before and after the presence of the electromagnetic ion cyclotron (EMIC) waves, but when the EMIC waves are present, the amplitude of the higher-frequency waves . . .
Date: 11/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071566 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071566/full
More Details
2015
Authors: Turner D. L., Claudepierre S G, Fennell J. F., O'Brien T P, Blake J B, et al.
Title: Energetic electron injections deep into the inner magnetosphere associated with substorm activity
Abstract: From a survey of the first nightside season of NASA's Van Allen Probes mission (Dec/2012 – Sep/2013), 47 energetic (10s to 100s of keV) electron injection events were found at L-shells ≤ 4, all of which are deeper than any previously reported substorm-related injections. Preliminary details from these events are presented, including how: all occurred shortly after dipolarization signatures and injections were observed at higher L-shells; the deepest observed injection was at L~2.5; and, surprisingly, L≤4 injections are limited in energy to ≤250 keV. We present a detailed case study of one example event revealing that the injection of electrons down to L~3.5 was different from injections observed at higher L and likely resulted from drift resonance with a fast magnetosonic wave in t. . .
Date: 02/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063225 Available at: http://doi.wiley.com/10.1002/2015GL063225
More Details
Authors: Min Kyungguk, Liu Kaijun, Bonnell John W., Breneman Aaron W., Denton Richard E, et al.
Title: Study of EMIC wave excitation using direct ion measurements
Abstract: With data from Van Allen Probes, we investigate EMIC wave excitation using simultaneously observed ion distributions. Strong He-band waves occurred while the spacecraft was moving through an enhanced density region. We extract from Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer measurement the velocity distributions of warm heavy ions as well as anisotropic energetic protons that drive wave growth through the ion cyclotron instability. Fitting the measured ion fluxes to multiple sinm-type distribution functions, we find that the observed ions make up about 15% of the total ions, but about 85% of them are still missing. By making legitimate estimates of the unseen cold (below ~2 eV) ion composition from cutoff frequencies suggested by the observed wave spectrum, a series of. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020717 Available at: http://doi.wiley.com/10.1002/2014JA020717
More Details
2014
Authors: Malaspina D. M., Ergun R. E., Sturner A., Wygant J R, Bonnell J W, et al.
Title: Chorus waves and spacecraft potential fluctuations: Evidence for wave-enhanced photoelectron escape
Abstract: Chorus waves are important for electron energization and loss in Earth's radiation belts and inner magnetosphere. Because the amplitude and spatial distribution of chorus waves can be strongly influenced by plasma density fluctuations and spacecraft floating potential can be a diagnostic of plasma density, the relationship between measured potential and chorus waves is examined using Van Allen Probes data. While measured potential and chorus wave electric fields correlate strongly, potential fluctuation properties are found not to be consistent with plasma density fluctuations on the timescales of individual chorus wave packets. Instead, potential fluctuations are consistent with enhanced photoelectron escape driven by chorus wave electric fields. Enhanced photoelectron escape may result i. . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 236 - 243 DOI: 10.1002/2013GL058769 Available at: http://doi.wiley.com/10.1002/2013GL058769
More Details
Authors: Chaston Christopher C., Bonnell J W, Wygant John R., Mozer Forrest, Bale Stuart D., et al.
Title: Observations of kinetic scale field line resonances
Abstract: We identify electromagnetic field variations from the Van Allen Probes which have the properties of Doppler shifted kinetic scale Alfvénic field line resonances. These variations are observed during injections of energetic plasmas into the inner magnetosphere. These waves have scale sizes perpendicular to the magnetic field which are determined to be of the order of an ion gyro-radius (ρi) and less. Cross-spectral analysis of the electric and magnetic fields reveals phase transitions at frequencies correlated with enhancements and depressions in the ratio of the electric and magnetic fields. Modeling shows that these observations are consistent with the excitation of field-line resonances over a broad range of wave numbers perpendicular to the magnetic field (k⊥) extending to k⊥ρi. . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 209 - 215 DOI: 10.1002/2013GL058507 Available at: http://doi.wiley.com/10.1002/2013GL058507
More Details
2013
Authors: Wygant J R, Bonnell J W, Goetz K, Ergun R E, Mozer F S, et al.
Title: The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission
Abstract: The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by ∼15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrume. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-0013-7 Available at: http://link.springer.com/article/10.1007%2Fs11214-013-0013-7
More Details