Biblio

Found 12 results
Filters: Author is Kurth, William S.  [Clear All Filters]
2019
Authors: Shi Run, Li Wen, Ma Qianli, Green Alex, Kletzing Craig A., et al.
Title: Properties of Whistler Mode Waves in Earth's Plasmasphere and Plumes
Abstract: Whistler mode wave properties inside the plasmasphere and plumes are systematically investigated using 5‐year data from Van Allen Probes. The occurrence and intensity of whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic local time, L, and AE. Based on the dependence of the wave normal angle and Poynting flux direction on L shell and normalized wave frequency to electron cyclotron frequency (fce), whistler mode waves are categorized into four types. Type I: ~0.5 fce with oblique wave normal angles mostly in plumes; Type II: 0.01–0.5 fce with small wave normal angles in the outer plasmasphere or inside plumes; Type III: <0.01 fce with oblique wave normal angles mostly within the plasmasphere or plumes; Type IV: 0.05–0.5 fce with oblique wave normal angl. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026041 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026041
More Details
2017
Authors: Li Jinxing, Bortnik Jacob, An Xin, Li Wen, Thorne Richard M, et al.
Title: Chorus Wave Modulation of Langmuir Waves in the Radiation Belts
Abstract: Using high-resolution waveforms measured by the Van Allen Probes, we report a novel observation in the radiation belts. Namely, we show that multiband, discrete, rising-tone whistler mode chorus emissions exhibit a one-to-one correlation with Langmuir wave bursts. Moreover, the periodic Langmuir wave bursts are generally observed at the phase location where the chorus wave E|| component is oriented opposite to its propagation direction. The electron measurements show a beam in phase space density at the particle velocity that matches the parallel phase velocity of the chorus waves. Based on this evidence, we conclude that the chorus waves accelerate the suprathermal electrons via Landau resonance and generate a localized electron beam in phase space density. Consequently, the Langmuir wave. . .
Date: 12/2017 Publisher: Geophysical Research Letters Pages: 11,713 - 11,721 DOI: 10.1002/2017GL075877 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL075877/full
More Details
Authors: Li Jinxing, Bortnik Jacob, Li Wen, Thorne Richard M, Ma Qianli, et al.
Title: Coherently modulated whistler mode waves simultaneously observed over unexpectedly large spatial scales
Abstract: Utilizing simultaneous twin Van Allen Probes observations of whistler mode waves at variable separations, we are able to distinguish the temporal variations from spatial variations, determine the coherence spatial scale, and suggest the possible mechanism of wave modulation. The two probes observed coherently modulated whistler mode waves simultaneously at an unexpectedly large distance up to ~4.3 RE over 3 h during a relatively quiet period. The modulation of 150–500 Hz plasmaspheric hiss was correlated with whistler mode waves measured outside the plasmasphere across 3 h in magnetic local time and 3 L shells, revealing that the modulation was temporal in nature. We suggest that the coherent modulation of whistler mode waves was associated with the coherent ULF waves measured ov. . .
Date: 02/2017 Publisher: Journal of Geophysical Research: Space Physics Pages: 1871-1882 DOI: 10.1002/2016JA023706 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023706/full
More Details
2016
Authors: Martinez-Calderon Claudia, Shiokawa Kazuo, Miyoshi Yoshizumi, Keika Kunihiro, Ozaki Mitsunori, et al.
Title: ELF/VLF wave propagation at subauroral latitudes: Conjugate observation between the ground and Van Allen Probes A
Abstract: We report simultaneous observation of ELF/VLF emissions, showing similar spectral and frequency features, between a VLF receiver at Athabasca (ATH), Canada, (L = 4.3) and Van Allen Probes A (Radiation Belt Storm Probes (RBSP) A). Using a statistical database from 1 November 2012 to 31 October 2013, we compared a total of 347 emissions observed on the ground with observations made by RBSP in the magnetosphere. On 25 February 2013, from 12:46 to 13:39 UT in the dawn sector (04–06 magnetic local time (MLT)), we observed a quasiperiodic (QP) emission centered at 4 kHz, and an accompanying short pulse lasting less than a second at 4.8 kHz in the dawn sector (04–06 MLT). RBSP A wave data showed both emissions as right-hand polarized with their Poynting vector earthward to the Northern Hemisp. . .
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 5384 - 5393 DOI: 10.1002/jgra.v121.610.1002/2015JA022264 Available at: http://doi.wiley.com/10.1002/2015JA022264
More Details
Authors: Zhang Jichun, Halford Alexa J., Saikin Anthony A., Huang Chia-Lin, Spence Harlan E., et al.
Title: EMIC waves and associated relativistic electron precipitation on 25-26 January 2013
Abstract: Using measurements from the Van Allen Probes and the Balloon Array for RBSP Relativistic Electron Losses (BARREL), we perform a case study of electromagnetic ion cyclotron (EMIC) waves and associated relativistic electron precipitation (REP) observed on 25–26 January 2013. Among all the EMIC wave and REP events from the two missions, the pair of the events is the closest both in space and time. The Van Allen Probe-B detected significant EMIC waves at L = 2.1–3.9 and magnetic local time (MLT) = 21.0–23.4 for 53.5 min from 2353:00 UT, 25 January 2013. Meanwhile, BARREL-1T observed clear precipitation of relativistic electrons at L = 4.2–4.3 and MLT = 20.7–20.8 for 10.0 min from 2358 UT, 25 January 2013. Local plasma and field conditions for the excitation of the. . .
Date: 10/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022918 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022918/full
More Details
Authors: Li Jinxing, Ni Binbin, Ma Qianli, Xie Lun, Pu Zuyin, et al.
Title: Formation of Energetic Electron Butterfly Distributions by Magnetosonic Waves via Landau Resonance
Abstract: Radiation belt electrons can exhibit different types of pitch angle distributions in response to various magnetospheric processes. Butterfly distributions, characterized by flux minima at pitch angles around 90°, are broadly observed in both the outer and inner belts and the slot region. Butterfly distributions close to the outer magnetospheric boundary have been attributed to drift shell splitting and losses to the magnetopause. However, their occurrence in the inner belt and the slot region has hitherto not been resolved. By analyzing the particle and wave data collected by the Van Allen Probes during a geomagnetic storm, we combine test particle calculations and Fokker-Planck simulations to reveal that scattering by equatorial magnetosonic waves is a significant cause for the formation. . .
Date: 04/2016 Publisher: Geophysical Research Letters Pages: n/a - n/a DOI: 10.1002/2016GL067853 Available at: http://doi.wiley.com/10.1002/2016GL067853http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2016GL067853
More Details
Authors: Li Jinxing, Bortnik Jacob, Thorne Richard M, Li Wen, Ma Qianli, et al.
Title: Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves
Abstract: The Van Allen Probe observations during the recovery phase of a large storm that occurred on 17 March 2015 showed that the ultrarelativistic electrons at the inner boundary of the outer radiation belt (L* = 2.6–3.7) exhibited butterfly pitch angle distributions, while the inner belt and the slot region also showed evidence of sub-MeV electron butterfly distributions. Strong magnetosonic waves were observed in the same regions and at the same time periods as these butterfly distributions. Moreover, when these magnetosonic waves extended to higher altitudes (L* = 4.1), the butterfly distributions also extended to the same region. Combining test particle calculations and Fokker-Planck diffusion simulations, we successfully reproduced the formation of the ultrarelativistic electron b. . .
Date: 04/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 3212 - 3222 DOI: 10.1002/2016JA022370 Available at: http://doi.wiley.com/10.1002/2016JA022370
More Details
2015
Authors: Min Kyungguk, Liu Kaijun, Bonnell John W., Breneman Aaron W., Denton Richard E, et al.
Title: Study of EMIC wave excitation using direct ion measurements
Abstract: With data from Van Allen Probes, we investigate EMIC wave excitation using simultaneously observed ion distributions. Strong He-band waves occurred while the spacecraft was moving through an enhanced density region. We extract from Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer measurement the velocity distributions of warm heavy ions as well as anisotropic energetic protons that drive wave growth through the ion cyclotron instability. Fitting the measured ion fluxes to multiple sinm-type distribution functions, we find that the observed ions make up about 15% of the total ions, but about 85% of them are still missing. By making legitimate estimates of the unseen cold (below ~2 eV) ion composition from cutoff frequencies suggested by the observed wave spectrum, a series of. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020717 Available at: http://doi.wiley.com/10.1002/2014JA020717
More Details
Authors: Moya Pablo. S., Pinto Víctor A., Viñas Adolfo F., Sibeck David G., Kurth William S., et al.
Title: Weak Kinetic Alfvén Waves Turbulence during the November 14th 2012 geomagnetic storm: Van Allen Probes observations
Abstract: n the dawn sector, L~ 5.5 and MLT~4-7, from 01:30 to 06:00 UT during the November 14th 2012 geomagnetic storm, both Van Allen Probes observed an alternating sequence of locally quiet and disturbed intervals with two strikingly different power fluctuation levels and magnetic field orientations: either small (~10−2 nT2) total power with strong GSM Bx and weak By, or large (~10 nT2) total power with weak Bx, and strong By and Bz components. During both kinds of intervals the fluctuations occur in the vicinity of the local ion gyro-frequencies (0.01-10 Hz) in the spacecraft frame, propagate oblique to the magnetic field, (θ ~ 60°) and have magnetic compressibility C = |δB|||/|δB⊥| ∼ 1, where δB|| (δB⊥) are the average amplitudes of the fluctuations parallel (perpendicular) to the. . .
Date: 06/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020281 Available at: http://doi.wiley.com/10.1002/2014JA020281
More Details
2014
Authors: Ni Binbin, Li Wen, Thorne Richard M, Bortnik Jacob, Green Janet C, et al.
Title: A novel technique to construct the global distribution of whistler mode chorus wave intensity using low-altitude POES electron data
Abstract: Although magnetospheric chorus plays a significant role in the acceleration and loss of radiation belt electrons, its global evolution during any specific time period cannot be directly obtained by spacecraft measurements. Using the low-altitude NOAA Polar-orbiting Operational Environmental Satellite (POES) electron data, we develop a novel physics-based methodology to infer the chorus wave intensity and construct its global distribution with a time resolution of less than an hour. We describe in detail how to apply the technique to satellite data by performing two representative analyses, i.e., (i) for one specific time point to visualize the estimation procedure and (ii) for a particular time period to validate the method and construct an illustrative global chorus wave model. We demonst. . .
Date: 07/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 5685 - 5699 DOI: 10.1002/jgra.v119.710.1002/2014JA019935 Available at: http://doi.wiley.com/10.1002/jgra.v119.7http://doi.wiley.com/10.1002/2014JA019935
More Details
Authors: Chaston Christopher C., Bonnell J W, Wygant John R., Mozer Forrest, Bale Stuart D., et al.
Title: Observations of kinetic scale field line resonances
Abstract: We identify electromagnetic field variations from the Van Allen Probes which have the properties of Doppler shifted kinetic scale Alfvénic field line resonances. These variations are observed during injections of energetic plasmas into the inner magnetosphere. These waves have scale sizes perpendicular to the magnetic field which are determined to be of the order of an ion gyro-radius (ρi) and less. Cross-spectral analysis of the electric and magnetic fields reveals phase transitions at frequencies correlated with enhancements and depressions in the ratio of the electric and magnetic fields. Modeling shows that these observations are consistent with the excitation of field-line resonances over a broad range of wave numbers perpendicular to the magnetic field (k⊥) extending to k⊥ρi. . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 209 - 215 DOI: 10.1002/2013GL058507 Available at: http://doi.wiley.com/10.1002/2013GL058507
More Details
Authors: Ni Binbin, Li Wen, Thorne Richard M, Bortnik Jacob, Ma Qianli, et al.
Title: Resonant scattering of energetic electrons by unusual low-frequency hiss
Abstract: We quantify the resonant scattering effects of the unusual low-frequency dawnside plasmaspheric hiss observed on 30 September 2012 by the Van Allen Probes. In contrast to normal (~100–2000 Hz) hiss emissions, this unusual hiss event contained most of its wave power at ~20–200 Hz. Compared to the scattering by normal hiss, the unusual hiss scattering speeds up the loss of ~50–200 keV electrons and produces more pronounced pancake distributions of ~50–100 keV electrons. It is demonstrated that such unusual low-frequency hiss, even with a duration of a couple of hours, plays a particularly important role in the decay and loss process of energetic electrons, resulting in shorter electron lifetimes for ~50–400 keV electrons than normal hiss, and should be carefully incorpora. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1854 - 1861 DOI: 10.1002/2014GL059389 Available at: http://doi.wiley.com/10.1002/2014GL059389
More Details