Found 23 results
Filters: Author is Li, Wen  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Authors: Teng Shangchun, Li Wen, Tao Xin, Ma Qianli, and Shen Xiaochen
Title: Characteristics and Generation of Low‐Frequency Magnetosonic Waves Below the Proton Gyrofrequency
Abstract: We report a Van Allen Probes observation of large‐amplitude magnetosonic waves with the peak intensity below the proton gyrofrequency (fcp), which may potentially be misinterpreted as electromagnetic ion cyclotron waves. The frequency spacing of the wave harmonic structure suggests that these magnetosonic waves are excited at a distant source region and propagate radially inward. We also conduct a statistical analysis of low‐frequency magnetosonic waves below fcp based on the Van Allen Probes data from October 2012 to December 2018. The spatial distribution shows that these low‐frequency magnetosonic emissions are dominantly observed inside the plasmasphere from the prenoon to the midnight sector within 5° of the geomagnetic equator and typically have modest‐to‐strong wave ampli. . .
Date: 10/2019 Publisher: Geophysical Research Letters Pages: 11652 - 11660 DOI: 10.1029/2019GL085372 Available at:
More Details
Authors: Li Jinxing, Bortnik Jacob, An Xin, Li Wen, Thorne Richard M, et al.
Title: Chorus Wave Modulation of Langmuir Waves in the Radiation Belts
Abstract: Using high-resolution waveforms measured by the Van Allen Probes, we report a novel observation in the radiation belts. Namely, we show that multiband, discrete, rising-tone whistler mode chorus emissions exhibit a one-to-one correlation with Langmuir wave bursts. Moreover, the periodic Langmuir wave bursts are generally observed at the phase location where the chorus wave E|| component is oriented opposite to its propagation direction. The electron measurements show a beam in phase space density at the particle velocity that matches the parallel phase velocity of the chorus waves. Based on this evidence, we conclude that the chorus waves accelerate the suprathermal electrons via Landau resonance and generate a localized electron beam in phase space density. Consequently, the Langmuir wave. . .
Date: 12/2017 Publisher: Geophysical Research Letters Pages: 11,713 - 11,721 DOI: 10.1002/2017GL075877 Available at:
More Details
Authors: Li Jinxing, Bortnik Jacob, Li Wen, Thorne Richard M, Ma Qianli, et al.
Title: Coherently modulated whistler mode waves simultaneously observed over unexpectedly large spatial scales
Abstract: Utilizing simultaneous twin Van Allen Probes observations of whistler mode waves at variable separations, we are able to distinguish the temporal variations from spatial variations, determine the coherence spatial scale, and suggest the possible mechanism of wave modulation. The two probes observed coherently modulated whistler mode waves simultaneously at an unexpectedly large distance up to ~4.3 RE over 3 h during a relatively quiet period. The modulation of 150–500 Hz plasmaspheric hiss was correlated with whistler mode waves measured outside the plasmasphere across 3 h in magnetic local time and 3 L shells, revealing that the modulation was temporal in nature. We suggest that the coherent modulation of whistler mode waves was associated with the coherent ULF waves measured ov. . .
Date: 02/2017 Publisher: Journal of Geophysical Research: Space Physics Pages: 1871-1882 DOI: 10.1002/2016JA023706 Available at:
More Details
Authors: Yue Chao, Bortnik Jacob, Li Wen, Ma Qianli, Gkioulidou Matina, et al.
Title: The composition of plasma inside geostationary orbit based on Van Allen Probes observations
Abstract: The composition of the inner magnetosphere is of great importance for determining the plasma pressure, and thus the currents and magnetic field configuration. In this study, we perform a statistical survey of equatorial plasma pressure distributions and investigate the relative contributions of ions and electron with different energies inside of geostationary orbit under two AE levels based on over sixty months of observations from the HOPE and RBSPICE mass spectrometers on board Van Allen Probes. We find that the total and partial pressures of different species increase significantly at high AE levels with Hydrogen (H+) pressure being dominant in the plasmasphere. The pressures of the heavy ions and electrons increase outside the plasmapause and develop a strong dawn‐dusk asymmetry with. . .
Date: 07/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025344 Available at:
More Details
Authors: Ma Qianli, Li Wen, Thorne Richard M, Bortnik Jacob, Kletzing C A, et al.
Title: Electron scattering by magnetosonic waves in the inner magnetosphere
Abstract: We investigate the importance of electron scattering by magnetosonic waves in the Earth's inner magnetosphere. A statistical survey of the magnetosonic wave amplitude and wave frequency spectrum, as a function of geomagnetic activity, is performed using the Van Allen Probes wave measurements, and is found to be generally consistent with the wave distribution obtained from previous spacecraft missions. Outside the plasmapause the statistical frequency distribution of magnetosonic waves follows the variation of the lower hybrid resonance frequency, but this trend is not observed inside the plasmasphere. Drift and bounce averaged electron diffusion rates due to magnetosonic waves are calculated using a recently developed analytical formula. The resulting time scale of electron energization du. . .
Date: 12/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021992 Available at:
More Details
Authors: Bin Kang Suk-, Fok Mei-Ching, Komar Colin, Glocer Alex, Li Wen, et al.
Title: An energetic electron flux dropout due to magnetopause shadowing on 1 June 2013
Abstract: We examine the mechanisms responsible for the dropout of energetic electron flux during 31 May – 1 June 2013, using Van Allen Probe (RBSP) electron flux data and simulations with the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. During storm main phase, L-shells at RBSP locations are greater than ~ 8, which are connected to open drift shells. Consequently, diminished electron fluxes were observed over a wide range of energies. The combination of drift shell splitting, magnetopause shadowing and drift loss all result in butterfly electron pitch-angle distributions (PADs) at the nightside. During storm sudden commencement, RBSP observations display electron butterfly PADs over a wide range of energies. However, it is difficult to determine whether there are butterfly PADs duri. . .
Date: 01/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024879 Available at:
More Details
Authors: Li Jinxing, Ni Binbin, Ma Qianli, Xie Lun, Pu Zuyin, et al.
Title: Formation of Energetic Electron Butterfly Distributions by Magnetosonic Waves via Landau Resonance
Abstract: Radiation belt electrons can exhibit different types of pitch angle distributions in response to various magnetospheric processes. Butterfly distributions, characterized by flux minima at pitch angles around 90°, are broadly observed in both the outer and inner belts and the slot region. Butterfly distributions close to the outer magnetospheric boundary have been attributed to drift shell splitting and losses to the magnetopause. However, their occurrence in the inner belt and the slot region has hitherto not been resolved. By analyzing the particle and wave data collected by the Van Allen Probes during a geomagnetic storm, we combine test particle calculations and Fokker-Planck simulations to reveal that scattering by equatorial magnetosonic waves is a significant cause for the formation. . .
Date: 04/2016 Publisher: Geophysical Research Letters Pages: n/a - n/a DOI: 10.1002/2016GL067853 Available at:
More Details
Authors: Chen Lunjin, Thorne Richard M, Bortnik Jacob, Li Wen, Horne Richard B, et al.
Title: Generation of Unusually Low Frequency Plasmaspheric Hiss
Abstract: It has been reported from Van Allen Probe observations that plasmaspheric hiss intensification in the outer plasmasphere, associated with a substorm injection on Sept 30 2012, occurred with a peak frequency near 100 Hz, well below the typical plasmaspheric hiss frequency range, extending down to ~20 Hz. We examine this event of unusually low frequency plasmaspheric hiss to understand its generation mechanism. Quantitative analysis is performed by simulating wave ray paths via the HOTRAY ray tracing code with measured plasma density and calculating ray path-integrated wave gain evaluated using the measured energetic electron distribution. We demonstrate that the growth rate due to substorm injected electrons is positive but rather weak, leading to small wave gain (~10 dB) during a sin. . .
Date: 08/2014 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL060628 Available at:
More Details
Authors: Meredith Nigel P, Horne Richard B, Kersten Tobias, Li Wen, Bortnik Jacob, et al.
Title: Global model of plasmaspheric hiss from multiple satellite observations
Abstract: We present a global model of plasmaspheric hiss, using data from eight satellites, extending the coverage and improving the statistics of existing models. We use geomagnetic activity dependent templates to separate plasmaspheric hiss from chorus. In the region 22‐14 MLT the boundary between plasmaspheric hiss and chorus moves to lower L∗ values with increasing geomagnetic activity. The average wave intensity of plasmaspheric hiss is largest on the dayside and increases with increasing geomagnetic activity from midnight through dawn to dusk. Plasmaspheric hiss is most intense and spatially extended in the 200‐500 Hz frequency band during active conditions, 400 Date: 05/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025226 Available at:
More Details
Authors: Ma Qianli, Li Wen, Chen Lunjin, Thorne Richard M, and Angelopoulos Vassilis
Title: Magnetosonic wave excitation by ion ring distributions in the Earth's inner magnetosphere
Abstract: Combining Time History of Events and Macroscale Interaction during Substorms (THEMIS) wave and particle observations and a quantitative calculation of linear wave growth rate, we demonstrate that magnetosonic (MS) waves can be locally excited by ion ring distributions in the Earth's magnetosphere when the ion ring energy is comparable to the local Alfven energy. MS waves in association with ion ring distributions were observed by THEMIS A on 24 November 2010 in the afternoon sector, both outside the plasmapause where the wave spectrum varied with fLHR and inside the plasmapause where the wave frequency band remained nearly constant. Our plasma instability analysis in three different regions shows that higher and narrow frequency band MS waves are excited locally outside the plasmapause, an. . .
Date: 02/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 844 - 852 DOI: 10.1002/2013JA019591 Available at:
More Details
Authors: Hua Man, Li Wen, Ma Qianli, Ni Binbin, Nishimura Yukitoshi, et al.
Title: Modeling the Electron Flux Enhancement and Butterfly Pitch Angle Distributions on L Shells <2.5
Abstract: We analyze an energetic electron flux enhancement event in the inner radiation belt observed by Van Allen Probes during an intense geomagnetic storm. The energetic electron flux at L~1.5 increased by a factor of 3 with pronounced butterfly pitch angle distributions (PADs). Using a three‐dimensional radiation belt model, we simulate the electron evolution under the impact of radial diffusion, local wave‐particle interactions including hiss, very low frequency transmitters, and magnetosonic waves, as well as Coulomb scattering. Consistency between observation and simulation suggests that inward radial diffusion plays a dominant role in accelerating electrons up to 900 keV and transporting the butterfly PADs from higher L shells to form the butterfly PADs at L~1.5. However, local wave‐p. . .
Date: 09/2019 Publisher: Geophysical Research Letters Pages: 10967 - 10976 DOI: 10.1029/2019GL084822 Available at:
More Details
Authors: Su Zhenpeng, Gao Zhonglei, Zhu Hui, Li Wen, Zheng Huinan, et al.
Title: Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013
Abstract: Radiation belt electron flux dropouts during the main phase of geomagnetic storms have received increasing attention in recent years. Here we focus on a rarely reported nonstorm time dropout event observed by Van Allen Probes on 24 September 2013. Within several hours, the radiation belt electron fluxes exhibited a significant (up to 2 orders of magnitude) depletion over a wide range of radial distances (L > 4.5), energies (∼500 keV to several MeV) and equatorial pitch angles (0°≤αe≤180°). STEERB simulations show that the relativistic electron loss in the region L = 4.5–6.0 was primarily caused by the pitch angle scattering of observed plasmaspheric hiss and electromagnetic ion cyclotron waves. Our results emphasize the complexity of radiation belt dynamics and the importance of. . .
Date: 07/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022546 Available at:
More Details
Authors: Ni Binbin, Li Wen, Thorne Richard M, Bortnik Jacob, Green Janet C, et al.
Title: A novel technique to construct the global distribution of whistler mode chorus wave intensity using low-altitude POES electron data
Abstract: Although magnetospheric chorus plays a significant role in the acceleration and loss of radiation belt electrons, its global evolution during any specific time period cannot be directly obtained by spacecraft measurements. Using the low-altitude NOAA Polar-orbiting Operational Environmental Satellite (POES) electron data, we develop a novel physics-based methodology to infer the chorus wave intensity and construct its global distribution with a time resolution of less than an hour. We describe in detail how to apply the technique to satellite data by performing two representative analyses, i.e., (i) for one specific time point to visualize the estimation procedure and (ii) for a particular time period to validate the method and construct an illustrative global chorus wave model. We demonst. . .
Date: 07/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 5685 - 5699 DOI: 10.1002/jgra.v119.710.1002/2014JA019935 Available at:
More Details
Authors: Kim Jin-Hee, Lee Dae-Young, Cho Jung-Hee, Shin Dae-Kyu, Kim Kyung-Chan, et al.
Title: A prediction model for the global distribution of whistler chorus wave amplitude developed separately for two latitudinal zones
Abstract: Whistler mode chorus waves are considered to play a central role in accelerating and scattering electrons in the outer radiation belt. While in situ measurements are usually limited to the trajectories of a small number of satellites, rigorous theoretical modeling requires a global distribution of chorus wave characteristics. In the present work, by using a large database of chorus wave observations made on the Time History of Events and Macroscale Interactions during Substorms satellites for about 5 years, we develop prediction models for a global distribution of chorus amplitudes. The development is based on two main components: (a) the temporal dependence of average chorus amplitudes determined by correlating with the preceding solar wind and geomagnetic conditions as represented by t. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020900 Available at:
More Details
Authors: Shi Run, Li Wen, Ma Qianli, Green Alex, Kletzing Craig A., et al.
Title: Properties of Whistler Mode Waves in Earth's Plasmasphere and Plumes
Abstract: Whistler mode wave properties inside the plasmasphere and plumes are systematically investigated using 5‐year data from Van Allen Probes. The occurrence and intensity of whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic local time, L, and AE. Based on the dependence of the wave normal angle and Poynting flux direction on L shell and normalized wave frequency to electron cyclotron frequency (fce), whistler mode waves are categorized into four types. Type I: ~0.5 fce with oblique wave normal angles mostly in plumes; Type II: 0.01–0.5 fce with small wave normal angles in the outer plasmasphere or inside plumes; Type III: <0.01 fce with oblique wave normal angles mostly within the plasmasphere or plumes; Type IV: 0.05–0.5 fce with oblique wave normal angl. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026041 Available at:
More Details
Authors: Lei Mingda, Xie Lun, Li Jinxing, Pu Zuyin, Fu Suiyan, et al.
Title: The Radiation Belt Electron Scattering by Magnetosonic Wave: Dependence on Key Parameters
Abstract: Magnetosonic (MS) waves have been found capable of creating radiation belt electron butterfly distributions in the inner magnetosphere. To investigate the physical nature of the interactions between radiation belt electrons and MS waves, and to explore a preferential condition for MS waves to scatter electrons efficiently, we performed a comprehensive parametric study of MS wave-electron interactions using test particle simulations. The diffusion coefficients simulated by varying the MS wave frequency show that the scattering effect of MS waves is frequency insensitive at low harmonics (f < 20 fcp), which has great implications on modeling the electron scattering caused by MS waves with harmonic structures. The electron scattering caused by MS waves is very sensitive to wave normal angles,. . .
Date: 12/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023801 Available at:
More Details
Authors: Yue Chao, Li Wen, Nishimura Yukitoshi, Zong Qiugang, Ma Qianli, et al.
Title: Rapid enhancement of low-energy (<100 eV) ion flux in response to interplanetary shocks based on two Van Allen Probes case studies: Implications for source regions and heating mechanisms
Abstract: Interactions between interplanetary (IP) shocks and the Earth's magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H+, He+, and O+, were enhanced dramatically in both the parallel and perpendicular directions. During the 2 October 2013 shock event, both parallel and perpendicular flux enhancemen. . .
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022808 Available at:
More Details
Authors: Yue Chao, An Xin, Bortnik Jacob, Ma Qianli, Li Wen, et al.
Title: The relationship between the macroscopic state of electrons and the properties of chorus waves observed by the Van Allen Probes
Abstract: Plasma kinetic theory predicts that a sufficiently anisotropic electron distribution will excite whistler mode waves, which in turn relax the electron distribution in such a way as to create an upper bound on the relaxed electron anisotropy. Here using whistler mode chorus wave and plasma measurements by Van Allen Probes, we confirm that the electron distributions are well constrained by this instability to a marginally stable state in the whistler mode chorus waves generation region. Lower band chorus waves are organized by the electron β∥e into two distinct groups: (i) relatively large-amplitude, quasi-parallel waves with inline image and (ii) relatively small-amplitude, oblique waves with inline image. The upper band chorus waves also have enhanced amplitudes close to the instabili. . .
Date: 08/2016 Publisher: Geophysical Research Letters Pages: 7804 - 7812 DOI: 10.1002/2016GL070084 Available at:
More Details
Authors: Ni Binbin, Li Wen, Thorne Richard M, Bortnik Jacob, Ma Qianli, et al.
Title: Resonant scattering of energetic electrons by unusual low-frequency hiss
Abstract: We quantify the resonant scattering effects of the unusual low-frequency dawnside plasmaspheric hiss observed on 30 September 2012 by the Van Allen Probes. In contrast to normal (~100–2000 Hz) hiss emissions, this unusual hiss event contained most of its wave power at ~20–200 Hz. Compared to the scattering by normal hiss, the unusual hiss scattering speeds up the loss of ~50–200 keV electrons and produces more pronounced pancake distributions of ~50–100 keV electrons. It is demonstrated that such unusual low-frequency hiss, even with a duration of a couple of hours, plays a particularly important role in the decay and loss process of energetic electrons, resulting in shorter electron lifetimes for ~50–400 keV electrons than normal hiss, and should be carefully incorpora. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1854 - 1861 DOI: 10.1002/2014GL059389 Available at:
More Details
Authors: Xiong Ying, Xie Lun, Pu Zuyin, Fu Suiyan, Chen Lunjin, et al.
Title: Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms
Abstract: Geomagnetic storms can either increase or decrease relativistic electron fluxes in the outer radiation belt. A statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies, while flux enhancements are more common at lower energies. In about 87% of the storms, 0.3–2.5 MeV electron fluxes show an increase, whereas 2.5–14 MeV electron fluxes increase in only 35% of the storms. Superposed epoch analyses suggest that such “energy-dependent” responses of electrons preferably occur during conditions of high solar wind density which is favorable to generate magnetospheric electromagnetic ion cyclotron (EMIC) waves, and these events are associated with relatively weaker chorus activities. We have examin. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 9513–9523 DOI: 10.1002/2015JA021440 Available at:
More Details
Authors: Shen Xiao‐Chen, Li Wen, Ma Qianli, Agapitov Oleksiy, and Nishimura Yukitoshi
Title: Statistical Analysis of Transverse Size of Lower Band Chorus Waves Using Simultaneous Multisatellite Observations
Abstract: Chorus waves are known to accelerate or scatter energetic electrons via quasi‐linear or nonlinear wave‐particle interactions in the Earth's magnetosphere. In this letter, by taking advantage of simultaneous observations of chorus waveforms from at least a pair of probes among Van Allen Probes and/or Time History of Events and Macroscale Interactions during Substorms (THEMIS) missions, we statistically calculate the transverse size of lower band chorus wave elements. The average size of lower band chorus wave element is found to be ~315±32 km over L shells of ~5–6. Furthermore, our results suggest that the scale size of lower band chorus tends to be (1) larger at higher L shells; (2) larger at higher magnetic latitudes, especially on the dayside; and (3) larger in the azimuthal direc. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083118 Available at:
More Details
Authors: Li Jinxing, Bortnik Jacob, Thorne Richard M, Li Wen, Ma Qianli, et al.
Title: Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves
Abstract: The Van Allen Probe observations during the recovery phase of a large storm that occurred on 17 March 2015 showed that the ultrarelativistic electrons at the inner boundary of the outer radiation belt (L* = 2.6–3.7) exhibited butterfly pitch angle distributions, while the inner belt and the slot region also showed evidence of sub-MeV electron butterfly distributions. Strong magnetosonic waves were observed in the same regions and at the same time periods as these butterfly distributions. Moreover, when these magnetosonic waves extended to higher altitudes (L* = 4.1), the butterfly distributions also extended to the same region. Combining test particle calculations and Fokker-Planck diffusion simulations, we successfully reproduced the formation of the ultrarelativistic electron b. . .
Date: 04/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 3212 - 3222 DOI: 10.1002/2016JA022370 Available at:
More Details
Authors: Ma Qianli, Mourenas Didier, Li Wen, Artemyev Anton, and Thorne Richard M
Title: VLF waves from ground-based transmitters observed by the Van Allen Probes: Statistical model and effects on plasmaspheric electrons
Abstract: Whistler-mode Very Low Frequency (VLF) waves from powerful ground-based transmitters can resonantly scatter energetic plasmaspheric electrons and precipitate them into the atmosphere. A comprehensive 4-year statistics of Van Allen Probes measurements is carried out to assess their consequences on the dynamics of the inner radiation belt and slot region. Statistical models of the measured wave electric field power and of the inferred full wave magnetic amplitude are provided as a function of L, magnetic local time, season, and Kp over L=1-3, revealing the localization of VLF wave intensity and its variation with geomagnetic activity over 2012-2016. Since this VLF wave model can be directly used together with existing hiss and lightning-generated wave models in radiation belt simulation code. . .
Date: 06/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL073885 Available at:
More Details