Found 2 results
Filters: Author is Koller, Josef  [Clear All Filters]
Authors: Yu Yiqun, Koller Josef, Jordanova Vania K., Zaharia Sorin G., Friedel Reinhard W., et al.
Title: Application and testing of the L * neural network with the self-consistent magnetic field model of RAM-SCB
Abstract: We expanded our previous work on L* neural networks that used empirical magnetic field models as the underlying models by applying and extending our technique to drift shells calculated from a physics-based magnetic field model. While empirical magnetic field models represent an average, statistical magnetospheric state, the RAM-SCB model, a first-principles magnetically self-consistent code, computes magnetic fields based on fundamental equations of plasma physics. Unlike the previous L* neural networks that include McIlwain L and mirror point magnetic field as part of the inputs, the new L* neural network only requires solar wind conditions and the Dst index, allowing for an easier preparation of input parameters. This new neural network is compared against those previously trained netwo. . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1683 - 1692 DOI: 10.1002/jgra.v119.310.1002/2013JA019350 Available at:
More Details
Authors: Zheng Liheng, Chan Anthony A, Albert Jay M, Elkington Scot R, Koller Josef, et al.
Title: Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates
Abstract: A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Itô stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle α0=90° is also derived. The model is applied to a simulation of the October 2002 storm event. At α0 near 90°, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at sm. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 7615 - 7635 DOI: 10.1002/jgra.v119.910.1002/2014JA020127 Available at:
More Details