Biblio

Found 16 results
Filters: Author is Takahashi, K.  [Clear All Filters]
Journal Article
Authors: Nakayama Y., Ebihara Y., Ohtani S, Gkioulidou M., Takahashi K., et al.
Title: Void structure of O + ions in the inner magnetosphere observed by the Van Allen Probes
Abstract: The Van Allen Probes Helium Oxygen Proton Electron instrument observed a new type of enhancement of O+ ions in the inner magnetosphere during substorms. As the satellite moved outward in the premidnight sector, the flux of the O+ ions with energy ~10 keV appeared first in the energy-time spectrograms. Then, the enhancement of the flux spread toward high and low energies. The enhanced flux of the O+ ions with the highest energy remained, whereas the flux of the ions with lower energy vanished near apogee, forming what we call the void structure. The structure cannot be found in the H+ spectrogram. We studied the generation mechanism of this structure by using numerical simulation. We traced the trajectories of O+ ions in the electric and magnetic fields from the global magnetohydrodynamic. . .
Date: 11/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023013 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023013/full
More Details
Authors: Oimatsu S., é M., Takahashi K., Yamamoto K., Keika K, et al.
Title: Van Allen Probes observations of drift-bounce resonance and energy transfer between energetic ring current protons and poloidal Pc4 wave
Abstract: A poloidal Pc4 wave and proton flux oscillations are observed in the inner magnetosphere on the dayside near the magnetic equator by the Van Allen Probes spacecraft on 2 March 2014. The flux oscillations are observed in the energy range of 67.0 keV to 268.8 keV with the same frequency of the poloidal Pc4 wave. We find pitch angle and energy dispersion in the phase difference between the poloidal magnetic field and the proton flux oscillations, which are features of drift‐bounce resonance. We estimate the resonance energy to be ~120 keV for pitch angle (α) of 30° or 150°, and 170–180 keV for α = 50° or 130°. To examine the direction of energy flow between protons and the wave, we calculate the sign of the gradient of proton phase space density (df/dW) on both the inbound and outbo. . .
Date: 04/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA025087 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2017JA025087
More Details
Authors: Claudepierre S G, Mann I R, Takahashi K, Fennell J F, Hudson M K, et al.
Title: Van Allen Probes observation of localized drift-resonance between poloidal mode ultra-low frequency waves and 60 keV electrons
Abstract: [1] We present NASA Van Allen Probes observations of wave-particle interactions between magnetospheric ultra-low frequency (ULF) waves and energetic electrons (20–500 keV) on 31 October 2012. The ULF waves are identified as the fundamental poloidal mode oscillation and are excited following an interplanetary shock impact on the magnetosphere. Large amplitude modulations in energetic electron flux are observed at the same period (≈ 3 min) as the ULF waves and are consistent with a drift-resonant interaction. The azimuthal mode number of the interacting wave is estimated from the electron measurements to be ~40, based on an assumed symmetric drift resonance. The drift-resonant interaction is observed to be localized and occur over 5–6 wave cycles, demonstrating peak electron flux modul. . .
Date: 09/2013 Publisher: Geophysical Research Letters Pages: 4491–4497 DOI: 10.1002/grl.50901 Available at: http://onlinelibrary.wiley.com/doi/10.1002/grl.50901/full
More Details
Authors: Ingraham J C, Cayton T E, Belian R D, Christensen R A, Friedel R H W, et al.
Title: Substorm injection of relativistic electrons to geosynchronous orbit during the great magnetic storm of March 24, 1991
Abstract: The great March 1991 magnetic storm and the immediately preceding solar energetic particle event (SEP) were among the largest observed during the past solar cycle, and have been the object of intense study. We investigate here, using data from eight satellites, the very large delayed buildup of relativistic electron flux in the outer zone during a 1.5-day period beginning 2 days after onset of the main phase of this storm. A notable feature of the March storm is the intense substorm activity throughout the period of the relativistic flux buildup, and the good correlation between some temporal features of the lower-energy substorm-injected electron flux and the relativistic electron flux at geosynchronous orbit. Velocity dispersion analysis of these fluxes between geosynchronous satellites . . .
Date: 11/2001 Publisher: Journal of Geophysical Research Pages: 25759 - 25776 DOI: 10.1029/2000JA000458 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2000JA000458/full
More Details
Authors: Ohtani S, Motoba T., Gkioulidou M., Takahashi K., and Singer H J
Title: Spatial Development of the Dipolarization Region in the Inner Magnetosphere
Abstract: The present study examines dipolarization events observed by the Van Allen Probes within 5.8 RE from Earth. It is found that the probability of occurrence is significantly higher in the dusk‐to‐midnight sector than in the midnight‐to‐dawn sector, and it deceases sharply earthward. A comparison with observations made at nearby satellites shows that dipolarization signatures are often highly correlated (c.c. > 0.8) within 1 hr in MLT and 1 RE in RXY, and the dipolarization region expands earthward and westward in the dusk‐to‐midnight sector. The westward expansion velocity is estimated at 0.4 hr (in MLT) per minute, or 60 km/s, which is consistent with the previously reported result for geosynchronous dipolarization. The earthward expansion is apparently less systematic than the . . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025443 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025443
More Details
Authors: Ukhorskiy A Y, Sitnov M I, Mitchell D G, Takahashi K, Lanzerotti L J, et al.
Title: Rotationally driven ‘zebra stripes’ in Earth’s inner radiation belt
Abstract: Structured features on top of nominally smooth distributions of radiation-belt particles at Earth have been previously associated with particle acceleration and transport mechanisms powered exclusively by enhanced solar-wind activity1, 2, 3, 4. Although planetary rotation is considered to be important for particle acceleration at Jupiter and Saturn5, 6, 7, 8, 9, the electric field produced in the inner magnetosphere by Earth’s rotation can change the velocity of trapped particles by only about 1–2 kilometres per second, so rotation has been thought inconsequential for radiation-belt electrons with velocities of about 100,000 kilometres per second. Here we report that the distributions of energetic electrons across the entire spatial extent of Earth’s inner radiation belt are organize. . .
Date: 01/2014 Publisher: Nature Pages: 338 - 340 DOI: 10.1038/nature13046 Available at: http://www.nature.com/doifinder/10.1038/nature13046
More Details
Authors: Motoba T., Ohtani S, Gkioulidou M., Ukhorskiy A., Mitchell D G, et al.
Title: Response of Different Ion Species to Local Magnetic Dipolarization Inside Geosynchronous Orbit
Abstract: This paper examines how hydrogen, helium and oxygen (H, He and O) ion fluxes at 1–1000 keV typically respond to local magnetic dipolarization inside geosynchronous orbit (GEO). We extracted 144 dipolarizations which occurred at magnetic inclination > 30° from the 2012–2016 tail seasons' observations of the Van Allen Probes spacecraft and then defined typical flux changes of these ion species by performing a superposed epoch analysis. On average, the dipolarization inside GEO is accompanied by a precursory transient decrease in the northward magnetic field component, transient impulsive enhancement in the westward electric field component, and decrease (increase) in the proton density (temperature). The coincident ion species experience an energy‐dependent flux change, consisting of . . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025557 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025557
More Details
Authors: Wang C., Rankin R, Wang Y., Zong Q.-G., Zhou X., et al.
Title: Poloidal mode wave-particle interactions inferred from Van Allen Probes and CARISMA ground-based observations
Abstract: Ultra‐low‐frequency (ULF) wave and test particle models are used to investigate the pitch angle and energy dependence of ion differential fluxes measured by the Van Allen Probes spacecraft on October 6th, 2012. Analysis of the satellite data reveals modulations in differential flux resulting from drift resonance between H+ ions and fundamental mode poloidal Alfvén waves detected near the magnetic equator at L∼5.7. Results obtained from simulations reproduce important features of the observations, including a substantial enhancement of the differential flux between ∼20° − 40° pitch angle for ion energies between ∼90 − 220keV, and an absence of flux modulations at 90°. The numerical results confirm predictions of drift‐bounce resonance theory and show good quantit. . .
Date: 05/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA025123 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2017JA025123
More Details
Authors: Gkioulidou Matina, Ohtani S, Ukhorskiy A Y, Mitchell D G, Takahashi K., et al.
Title: Low-Energy (+ Ion Outflow Directly Into the Inner Magnetosphere: Van Allen Probes Observations
Abstract: The heavy ion component of the low‐energy (eV to hundreds of eV) ion population in the inner magnetosphere, also known as the O+ torus, is a crucial population for various aspects of magnetospheric dynamics. Yet even though its existence has been known since the 1980s, its formation remains an open question. We present a comprehensive study of a low‐energy (Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 405 - 419 DOI: 10.1029/2018JA025862 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025862
More Details
Authors: Motoba T., Takahashi K., Ukhorskiy A., Gkioulidou M., Mitchell D G, et al.
Title: Link between pre-midnight second harmonic poloidal waves and auroral undulations: Conjugate observations with a Van Allen Probes spacecraft and a THEMIS all-sky imager
Abstract: We report, for the first time, an auroral undulation event on 1 May 2013 observed by an all-sky imager (ASI) at Athabasca (L = 4.6), Canada, for which in situ field and particle measurements in the conjugate magnetosphere were available from a Van Allen Probes spacecraft. The ASI observed a train of auroral undulation structures emerging spontaneously in the pre-midnight subauroral ionosphere, during the growth phase of a substorm. The undulations had an azimuthal wavelength of ~180 km and propagated westward at a speed of 3–4 km s−1. The successive passage over an observing point yielded quasi-periodic oscillations in diffuse auroral emissions with a period of ~40 s. The azimuthal wave number m of the auroral luminosity oscillations was found to be m ~ −103. During the event the spa. . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020863 Available at: http://doi.wiley.com/10.1002/2014JA020863
More Details
Authors: Ukhorskiy A Y, Takahashi K, Anderson B. J., and Korth H.
Title: Impact of toroidal ULF waves on the outer radiation belt electrons
Abstract: Relativistic electron fluxes in the outer radiation belt exhibit highly variable complex behavior. Previous studies have established a strong correlation of electron fluxes and the inner magnetospheric ULF waves in the Pc 3–5 frequency range. Resonant interaction of ULF waves with the drift motion of radiation belt electrons violates their third adiabatic invariant and consequently leads to their radial transport. If the wave-particle interaction has a stochastic character, then the electron transport is diffusive. The goal of this paper is to analyze the impact of toroidal ULF waves on radiation belt electrons. The study is based on direct measurements of ULF electric fields on the CRRES spacecraft. We show that the electric fields of inner magnetospheric toroidal ULF waves exhibit high. . .
Date: 10/2005 Publisher: Journal of Geophysical Research DOI: 10.1029/2005JA011017 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2005JA011017/abstract
More Details
Authors: Le G., Chi P. J., Strangeway R J, Russell C. T., Slavin J. A., et al.
Title: Global observations of magnetospheric high- m poloidal waves during the 22 June 2015 magnetic storm
Abstract: We report global observations of high-m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers (m ~ 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single-frequency global poloidal modes normally obs. . .
Date: 04/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL073048 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL073048/full
More Details
Authors: Dai L, Takahashi K, Wygant J R, Chen L, Bonnell J W, et al.
Title: Excitation of Poloidal standing Alfven waves through the drift resonance wave-particle interaction
Abstract: Drift-resonance wave-particle interaction is a fundamental collisionless plasma process studied extensively in theory. Using cross-spectral analysis of electric field, magnetic field, and ion flux data from the Van Allen Probe (Radiation Belt Storm Probes) spacecraft, we present direct evidence identifying the generation of a fundamental mode standing poloidal wave through drift-resonance interactions in the inner magnetosphere. Intense azimuthal electric field (Eφ) oscillations as large as 10mV/m are observed, associated with radial magnetic field (Br) oscillations in the dawn-noon sector near but south of the magnetic equator at L∼5. The observed wave period, Eφ/Br ratio and the 90° phase lag between Br and Eφ are all consistent with fundamental mode standing Poloidal waves. Phase . . .
Date: 08/2013 Publisher: Geophysical Research Letters DOI: 10.1002/grl.50800 Available at: http://onlinelibrary.wiley.com/doi/10.1002/grl.50800/full
More Details
Authors: Turner D. L., Claudepierre S G, Fennell J. F., O'Brien T P, Blake J B, et al.
Title: Energetic electron injections deep into the inner magnetosphere associated with substorm activity
Abstract: From a survey of the first nightside season of NASA's Van Allen Probes mission (Dec/2012 – Sep/2013), 47 energetic (10s to 100s of keV) electron injection events were found at L-shells ≤ 4, all of which are deeper than any previously reported substorm-related injections. Preliminary details from these events are presented, including how: all occurred shortly after dipolarization signatures and injections were observed at higher L-shells; the deepest observed injection was at L~2.5; and, surprisingly, L≤4 injections are limited in energy to ≤250 keV. We present a detailed case study of one example event revealing that the injection of electrons down to L~3.5 was different from injections observed at higher L and likely resulted from drift resonance with a fast magnetosonic wave in t. . .
Date: 02/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063225 Available at: http://doi.wiley.com/10.1002/2015GL063225
More Details
Authors: Jaynes A. N., Lessard M. R., Takahashi K., Ali A. F., Malaspina D. M., et al.
Title: Correlated Pc4-5 ULF waves, whistler-mode chorus and pulsating aurora observed by the Van Allen Probes and ground-based systems
Abstract: Theory and observations have linked equatorial VLF waves with pulsating aurora for decades, invoking the process of pitch-angle scattering of 10's keV electrons in the equatorial magnetosphere. Recently published satellite studies have strengthened this argument, by showing strong correlation between pulsating auroral patches and both lower-band chorus and 10's keV electron modulation in the vicinity of geosynchronous orbit. Additionally, a previous link has been made between Pc4-5 compressional pulsations and modulation of whistler-mode chorus using THEMIS. In the current study, we present simultaneous in-situ observations of structured chorus waves and an apparent field line resonance (in the Pc4-5 range) as a result of a substorm injection, observed by Van Allen Probes, along with groun. . .
Date: 07/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021380 Available at: http://doi.wiley.com/10.1002/2015JA021380
More Details
Book
Authors: Elkington Scot R, Takahashi K, Chi Peter J, Denton Richard E, and Lysak Robert L
Title: A review of ULF interactions with radiation belt electrons
Abstract: Energetic particle fluxes in the outer zone radiation belts can vary over orders of magnitude on a variety of timescales. Power at ULF frequencies, on the order of a few millihertz, have been associated with changes in flux levels among relativis- tic electrons comprising the outer zone of the radiation belts. Power in this part of the spectrum may occur as a result of a number of processes, including internally- generated waves induced by plasma instabilities, and externally generated processes such as shear instabilities at the flanks or compressive variations in the solar wind. Changes in the large-scale convective motion of the magnetosphere are another important class of externally driven variations with power at ULF wavelengths. The mechanism for interaction between ULF vari. . .
Date: Publisher: American Geophysical Union Pages: 177 - 193 DOI: 10.1029/169GM12 Available at: http://onlinelibrary.wiley.com/doi/10.1029/169GM12/summary
More Details