Biblio

Found 2 results
Filters: Author is Roeder, J.L.  [Clear All Filters]
2015
Authors: Skov Mulligan, Fennell J.F., Roeder J.L., Blake J.B., and Claudepierre S.G.
Title: Internal Charging Hazards in Near-Earth Space during Solar Cycle 24 Maximum: Van Allen Probes Measurements
Abstract: The Van Allen Probes mission provides an unprecedented opportunity to make detailed measurements of electrons and protons in the inner magnetosphere during the weak solar maximum period of cycle 24. Data from the MagEIS suite of sensors measures energy spectra, fluxes, and yields electron deposition rates that can cause internal charging. We use omni-directional fluxes of electrons and protons to calculate the dose under varying materials and thicknesses of shielding (similar to Fennell et al., 2010). We show examples of charge deposition rates during times of nominal and high levels of penetrating fluxes in the inner magnetosphere covering the period from late 2012 through 2013. These charge deposition rates are related to charging levels quite possibly encountered. . .
Date: 09/2015 Publisher: JPL DOI: 10.1109/TPS.2015.2468214 Available at: http://ieeexplore.ieee.org/document/7247811/?reload=true&arnumber=7247811
More Details
Authors: O'Brien T.P., Claudepierre S.G., Looper M.D., Blake J.B., Fennell J.F., et al.
Title: On the use of drift echoes to characterize on-orbit sensor discrepancies
Abstract: We describe a method for using drift echo signatures in on-orbit data to resolve discrepancies between different measurements of particle flux. The drift period has a well-defined energy dependence, which gives rise to time dispersion of the echoes. The dispersion can then be used to determine the effective energy for one or more channels given each channel's drift period and the known energy for a reference channel. We demonstrate this technique on multiple instruments from the Van Allen probes mission. Drift echoes are only easily observed at high energies (100s keV to multiple MeV), where several drift periods occur before the observing satellite has moved on or the global magnetic conditions have changed. We describe a first-order correction for spacecraft motion. The drift echo techni. . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020859 Available at: http://doi.wiley.com/10.1002/2014JA020859
More Details